首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Shallow soils on acidic bedrock in dry areas of Central Europe support dry grasslands and heathlands that were formerly used as extensive pastures. These habitats are of high conservation value, but their abandonment in the 20th century triggered slow natural succession that poses a threat to specialized plant species. We asked how this vegetation and its plant diversity have changed over the past three decades and whether protected areas have positively affected habitat quality.

Location

Southwestern and central Moravia, Czech Republic.

Methods

In 2018–2019, we resurveyed 94 vegetation plots first sampled in 1986–1991 at 47 acidic dry grassland and heathland sites. We compared the number of all vascular plant species, Red List species and alien species per plot using parametric and non-parametric tests, life-form spectra using the chi-square test, species composition using detrended correspondence analysis, and indicator values using a permutation test. We also compared these changes between sites within and outside protected areas.

Results

Vegetation changes over the past three decades have been relatively small. However, we detected a decrease in total species richness, the number of Red List species and the number of characteristic species of dry grasslands. Neophytes were infrequent, while archaeophytes increased slightly. The competitive tall grass Arrhenatherum elatius, annual species and young woody plants increased in abundance or newly established at many sites. Indicator values did not change except for a slight increase in nutrient values. These negative trends occurred both within and outside protected areas but were more pronounced outside.

Conclusions

Formerly grazed acidic dry grasslands and heathlands in Moravia are slowly losing habitat specialists, including threatened plant species, and are increasingly dominated by Arrhenatherum elatius. Conservation management, especially cutting in protected areas, slows down the negative trends of decline in plant diversity and habitat quality but is insufficient to halt these processes completely.  相似文献   

2.
  1. Shrub encroachment has far‐reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning.
  2. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound‐specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution.
  3. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n‐alkane distributions and the δ13C and δ13Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our δD record suggests physiological adaptations of woody species to higher atmospheric pCO2 concentration and drought, our vegetation records reflect the impact of broad‐scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling‐resistant taxa. In addition, grain‐size and spore records suggest changes in the erodibility of soils because of reduced grass cover.
  4. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.
  相似文献   

3.
4.
Question: An ancient woodland site with a long history of coppicing and heavy grazing was protected from domesticated stock in 1955. Results of a vegetation-monitoring experiment were subsequently published in 1983. This study followed up the original research to investigate whether observed trends were as predicted. These included a shift in tree species composition in favour of shade-tolerant species, beech (Fagus sylvatica) and rowan (Sorbus aucuparia), at the expense of light-demanding birch (Betula spp.) and oak (Quercus petraea agg.), and progress towards a typical woodland ground flora. Location: Peak District National Park, United Kingdom. Methods: The mixed oak–birch woodland was re-surveyed in 2011. Two enclosures (1955 and 1980s) and an unenclosed control area were investigated. Overstorey structure and composition was assessed by measuring canopy openness and the girths of all trees and saplings. Herb layer species composition was also recorded in 28 vegetation plots. Results: We demonstrated a progressive decline in the number of mature oaks and birch in the old enclosure although they still regenerated successfully. Only a few individuals of beech and rowan appeared. Herb layer species composition differed between the subareas but since the 1980s, the temporal change in the old enclosure was negligible. The new enclosure followed a similar pattern in both canopy and herb layer as observed in the early years in the old enclosure. However, the control subarea had no regeneration of woody species and limited ground flora. Conclusions: After nearly 60 years, the replacement of light-demanding dominants by shade-tolerant trees was still limited, probably by low pH and stable light conditions. The findings are pertinent to the impacts of large herbivore grazing (domestic stock or wild) on woodland dynamics.  相似文献   

5.
段语凤  张玉秀  余创 《生态学报》2020,40(23):8717-8728
我国西北干旱荒漠区生态环境脆弱,煤炭开采活动严重地破坏植被和影响生态环境,而煤炭井工开采对干旱荒漠区植被动态变化的影响尚不明确。以灵武市为例,采用遥感技术和野外实地调查相结合的方法,分析2000-2019年间煤炭井工开采对植被动态变化的影响。结果表明:灵武市的植被主要以沙蒿(Artemisia salsoloides)、柠条(Caragana korshinskii)和芨芨草(Achnatherum splendens)等荒漠植物为主;2000-2019年间,植被覆盖度(FVC)和绿度变化率(GRC)表明灵武市植被整体呈现改善趋势;归一化植被指数(NDVI)与年降水量(P)和年平均风速(S)等气象因子显著相关,表明气候因子对区域植被动态变化起主要作用;煤炭开采区侵占草地和灌丛面积,使得土地利用类型发生变化,生态环保政策的实施对于区域土地利用类型的变化和植被改善具有重要作用。实地调查分析表明煤炭开采改变了矿区植物群落结构,植被盖度和物种多样性指数均在煤炭开采后1-4a呈下降趋势,5-9a为上升趋势,10a自然恢复后与对照区的变化趋势一致,说明在自然条件下煤炭开采区植被恢复经历了退化期、改善期和初步恢复期等过程。这些研究结果为西北干旱荒漠区煤炭井工开采矿区植被恢复和生态环境建设提供了理论基础。  相似文献   

6.
Aim To investigate the relationship between the slope z of the species–area relationship (SAR) and the intensity of spatial patterns in species number and dissimilarity for woody plants with different modes of seed dispersal. According to island theory we expect, for any given archipelago, steeper slopes and more pronounced spatial patterns for groups of less dispersive species. Location Ivory Coast, West Africa. Methods In a West African forest–savanna mosaic we collected presence–absence data for woody plant species in 49 forest islands. The parameters of the SARs were fitted by nonlinear regressions and then compared for plant species aggregated according to their mode of seed dispersal. We used the Mantel test to calculate the intensity of spatial patterns in species number, i.e. residual deviation from SAR, and species dissimilarity. Results The z‐value for bird‐dispersed species was lower (0.11) than that for wind‐dispersed species (0.27), with mammal‐dispersed species taking an intermediate value (0.16). This result suggests that, as a group, bird‐dispersed species are better colonizers. The spatial pattern in species number as well as species similarity was more pronounced for bird‐ compared with wind‐dispersed species. Main conclusions The standard interpretation of the theory of island biogeography claims that shallow slopes in the SAR imply low isolation of islands, i.e. good dispersal abilities of species. The results of our study appear to contradict this statement. The contradiction can eventually be resolved by a more detailed account of the colonization process, i.e. by distinguishing between dispersal and consecutive establishment of populations.  相似文献   

7.

Questions

Fire regime alterations are pushing open ecosystems worldwide past tipping points where alternative steady states characterized by woody dominance prevail. This reduces the frequency and intensity of surface fires, further limiting their effectiveness for controlling cover of woody plants. In addition, grazing pressure (exotic or native grazers) can reinforce woody encroachment by potentially reducing fine-fuel loads. We investigated the effects of different fire energies on the herbaceous plant community, together with mammalian wildlife herbivory (exotic and native combined) exclusion, to inform best management practices.

Location

Texas semi-arid savanna, southern Great Plains, USA.

Methods

We conducted an experiment in which we manipulated fire intensity and herbivore access to herbaceous biomass in a split-plot design. We altered fire energy via fuel addition rather than applying fire under different environmental conditions to control for differences in standing biomass and composition attributable to differential plant physiological status and fire season.

Results

High-energy fire did not reduce herbaceous biomass or alter plant community composition, although it did increase among-plot variability in composition and forb biomass relative to low-energy fire and non-burned controls. Grazing pressure from native and non-native mammalian herbivores reduced above-ground herbaceous biomass regardless of fire treatments, but did not alter community composition.

Conclusions

Managers seeking to apply high-intensity prescribed fire to reduce woody encroachment will not negatively impact herbaceous plant productivity or alter community composition. However, they should be cognizant that repeated fires necessary for greatly reducing woody plants in heavily invaded areas might be difficult to accomplish due to fine-fuel reduction from wild herbivores. High fencing to restrict access by wildlife herbivores or culling might be necessary to build fuels sufficient to conduct high-intensity burns for woody-plant reduction.  相似文献   

8.
甘肃安西极旱荒漠国家级自然保护区目前已进行了三次综合科学考察(以下简称科考): 第一次1988-1989年、第二次2002-2003年、第三次2012-2013年。在三次科考20多年的时间跨度中, 脊椎动物各类群物种多样性发生了一定的变化: 鱼类增加了2种, 减少了3种土著种; 两栖爬行类种类一直保持稳定; 保护区三次科考记录的151种鸟类中, 有55.63%(84种)一直稳定分布。因气候变暖, 鸟类区系中东洋界比例增加, 有明显的分布区向西扩散的物种成分, 同时也有从新疆向东扩散的种类以及高原扩散来的成分。20年间分布减少的29种鸟类中, 主要为夏候鸟(41.37%)和旅鸟(48.28%), 这些鸟类的分布消失随机性很大。哺乳类的分布相对比较稳定, 第三次科考没有调查到的6种哺乳类应该是由于调查方法造成的。新增的小五趾跳鼠(Allactaga elater)是甘肃省啮齿类的一个新记录, 表明该物种分布区有向东南扩散的趋势。  相似文献   

9.
10.
Marine phytoplankton fuel the oceanic biotic chain, determine the carbon sequestration levels, and are crucial for the global carbon cycle and climate change. In the present study, we show a near-two-decadal (2002–2022) spatiotemporal distribution of global phytoplankton abundance, proxy as dominant phytoplankton taxonomic groups (PTGs), with a newly developed remote sensing model. Globally, six chief PTGs, namely chlorophytes (~26%), diatoms (~24%), haptophytes (~15%), cryptophytes (~10%), cyanobacteria (~8%), and dinoflagellates (~3%), explain most of the variation (~86%) in phytoplankton assemblages. Spatially, diatoms generally dominate high latitudes, marginal seas, and coastal upwelling zones, whereas chlorophytes and haptophytes control the open oceans. Satellite observations reveal a gentle multi-annual trend of the PTGs in the major oceans, indicative of roughly “unchanged” conditions on the total biomass or compositions of the phytoplankton community. Jointly, “changed” status applies to a short-term (seasonal) timescale: (1) Fluctuations of PTGs exhibit different amplitudes among different subregions, together with a general rule-more intense vibration in the Northern Hemisphere and polar oceans than other zones; (2) diatoms and haptophytes vary more dramatically than other PTGs in a global-scale scope. These findings provide a clear picture of the global phytoplankton community composition and can improve our understanding of their state and further analysis of marine biological processes.  相似文献   

11.
Marine fish are an irreplaceable resource, but are currently under threat through overfishing and climate change. To date, most of the emphasis has been on single stocks or populations of economic importance. However, commercially valuable species are embedded in assemblages of many species and there is only limited understanding of the extent to which the structure of whole communities has altered in recent years. Most assemblages are dominated by one or a few species, with these highly abundant species underpinning ecosystem services and harvesting decisions. This paper shows that there have been marked temporal changes in the dominance structure of Scottish marine-fish assemblages over the past three decades, where dominance is measured as the proportional numerical abundance of the most dominant species. We report contrasting patterns in both the identity of the dominant species and shifts in the relative abundance of the dominant in assemblages to the east and west of Scotland, UK. This result highlights the importance of multi-species analyses of harvested stocks and has implications not only for fisheries management but also for consumer choices.  相似文献   

12.
Changes in the abundance and distribution of individual species have been widely documented in Britain and other countries in recent decades, but little has been done to determine changes in community composition over broad geographic areas. Here, we studied species turnover in 51 butterfly assemblages in Britain since 1976, examining extinction and colonisation events together with variation in the abundances of the species. We showed that the species turnover that occurred over 20 years in Britain was associated with colonisation and extinction events and also with variability in the abundance of the species. These changes in community composition differed according to the habitat requirements of the species and their previous distributions, being more evident for habitat specialists and for southerly distributed species. Colonising species often became abundant components of the communities they joined, although this was more evident for generalist than for specialist species. The abundance of species following their arrival, increased with time since colonisation. Species turnover associated with southerly species expanding northwards is consistent with being a response to climate change. The results suggest that climate- and habitat-driven changes in the identity and abundance of species within communities are widespread, and probably ubiquitous. Similar changes are likely to be occurring in other groups of organisms that are similarly undertaking major range shifts associated with climate change.  相似文献   

13.
In western North America, riparian vegetation is being lost in response to changes in land use and climate. We examined the relationship between obligate riparian species of songbirds and environmental and riparian habitat factors in three mountain ranges in the central Great Basin (Nevada, U.S.A.). We estimated patterns of occupancy, colonization, and local extinction for three species detected during the breeding seasons of 2001–2006: MacGillivray's Warbler ( Oporornis tolmiei ), Broad-tailed Hummingbird ( Selasphorus platycercus ), and Song Sparrow ( Melospiza melodia ). We used model selection and multimodel inference to identify functional relationships between the occupancy of each species and multiple habitat variables, including the structure and composition of riparian vegetation. Among all years and species, we observed considerable variation in estimates of detection probability. For MacGillivray's Warbler, annual occupancy rates were relatively constant. Occupancy rates for Broad-tailed Hummingbird and Song Sparrow increased during the first 3–4 years of our study and then decreased. Each species experienced its highest rate of local extinction during 2005. Different components of riparian vegetation were good predictors of occupancy, colonization, and local extinction for each species. Typically, elevation and latitude also were strong predictors. Establishing functional relationships between avifauna and vegetation is essential to predicting how land-cover change may affect the occupancy of riparian areas and other habitats for birds. The conservation of breeding birds in riparian areas in the central Great Basin is more likely to succeed if the quality of their understory habitat as well as the canopy is maintained and restored.  相似文献   

14.
This study determined the effects of land-use practice had on the rate and extent of bush encroachment in a mesic savanna in KwaZulu-Natal, South Africa. Changes in woody cover were measured for 1 km2 sites in areas under communal, commercial and conservation land-use systems for the period between 1937 and 2000. Land users from each area were interviewed to gain the histories of each area and to determine how the changes in woody cover had impacted them and whether anything was being done to counteract the spread of trees and shrubs on their land. Bush encroachment occurred across all three of the land-use types in the 67-year period between 1937 and 2000. The results showed that land-use practice had enormous impacts on the process of bush encroachment. The communal site showed a decrease in grass (21%) and tree (5%) cover and an increase in shrub cover (13%). At the commercial site, there was a considerable decrease in grass cover (46%) and moderate increase in shrub cover (10%) and a massive increase in tree cover (36%). The area under conservation showed a substantial decrease in grass cover (47%), a slight decrease in shrub cover (19%) and a massive increase in tree cover (66%). The perceived causes of these changes were fairly similar amongst the different land users. The changes were mostly not perceived to be a problem for the communal land users. The main advantages mentioned were increased woody resources for building and firewood and increased browse availability. The commercial and conservation land users perceived the changes to have significant negative connotations including the loss of grazing land and biodiversity and secondary invasion of encroached areas by alien plant species. Despite these perceptions, very little has been done to combat bush encroachment in the commercial and conservation land use systems.  相似文献   

15.
16.
三江平原北部生态系统服务价值的时空演变   总被引:4,自引:0,他引:4  
陈阳  张建军  杜国明  付梅臣  刘凌露 《生态学报》2015,35(18):6157-6164
以三江平原北部地区2市5县为研究区,采用生态系统服务价值评估方法对1954—2009年间三江平原北部地区生态系统服务价值进行估算,以期全面分析土地生态系统服务价值随时空变化的特点。结果表明:(1)1954—2009年间三江平原北部地区的不同土地利用类型面积变化显著,农田变化速度最快,其次为湿地,人口数量的增加及保证粮食增产是土地利用变化的主要驱动力。(2)1954—2009年三江平原北部地区生态系统服务价值总量逐渐减少,共减少779.51亿元。长期的土地垦殖是三江平原北部地区生态系统服务价值减少的主要驱动因素。(3)就各土地利用类型生态系统服务价值而言,55年间除农田生态系统和水域生态系统生态服务价值是增加外,其余各生态系统服务价值均在减少。湿地生态系统服务价值减少值最大,其次为林地生态系统服务价值。各项生态系统服务功能除与农田相关的食物生产在增加,其余也均呈减少趋势。(4)不同地区单位面积生态系统服务价值损失量也不相同,湿地、林地面积比重下降幅度大、且农田面积比重上升幅度大的区域,其单位面积生态系统服务价值损失量也较大。  相似文献   

17.
Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m?2 mm?1 yr?1 under the single effect of rising CO2 (‘CO2’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO2 shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (?0.0005 g C m?2 mm?1 yr?1), which differs from process‐model (0.0064 g C m?2 mm?1 yr?1) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEt (GPP/TR) and inherent water‐use efficiency (IWUEt, GPP×VPD/TR) in response to rising CO2, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.  相似文献   

18.
19.
Understanding factors influencing large herbivore densities and distribution in terrestrial ecosystems is a fundamental goal of ecology. This study examined environmental factors influencing the density and distribution of wild large herbivores in Gonarezhou National Park, Zimbabwe. Vegetation and surface water were predicted to have a stronger influence than anthropogenic‐related disturbances (livestock grazing, fires, settlements and poaching) on the density and distribution of wild large herbivores. Aerial survey data for seven common wild large herbivores conducted in 2007 and 2009 and environmental data were collected. Only grass cover explained a significant proportion of the variation in large herbivore densities and distribution. Moreover, only two species densities significantly differed across the Gonarezhou, namely impala and zebra. In contrast, buffalo, elephant, giraffe, kudu and nyala densities did not differ significantly across the Gonarezhou. Overall, the findings only partly support the study prediction. The study results suggest the need to further investigate the roles of environmental factors at smaller scales in order to tease out their relative strengths in influencing density and distribution of large herbivores.  相似文献   

20.
Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0–150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C‐N‐P stoichiometry across subtropical China, where soils are P‐impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C‐N‐P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO2 concentration and regional warming. Our findings revealed that the responses of soil C‐N‐P and stoichiometry to long‐term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号