首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

2.
Factors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale‐dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee‐site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications: Different factors affect wild bee diversity at the scale of landscape and patch in heterogeneous tropical agricultural systems. The differential response of bee functional groups to agricultural intensification underpins the need for guild‐specific management strategies for wild bee conservation. Less intensively farmed areas support more rare species and are vulnerable to disturbance; consequently, these areas should be prioritized for conservation to maintain heterogeneity in the landscape. It is important to conserve and restore seminatural habitats to maintain complexity in the landscapes through participatory processes and to regulate synthetic chemical pesticides in farm operations to conserve the species and functional diversity of wild bees.  相似文献   

3.
Abstract The response of insects to monoculture plantations has mainly proceeded at the expense of natural forest areas, and is an outstanding and important issue in ecology and conservation biology, with pollination services declined around the world. In this study, species richness and distribution of hoverfly and wild bee communities were investigated in a changing tropical landscape in southern Yunnan, south‐west China by Malaise traps periodically from 2008 to 2009. Species were recorded from the traditional land use types (natural forest, grassland, shrubland and rice field fallows), and from recently established rubber plantations of different ages. Hoverflies (total 53 species) were most common in young successional stages of vegetation, including rice field fallow and shrubland. Species richness was highest in rice field fallows and lowest in forests and showed a highly significant relationship with the number of forb species and ground vegetation cover. In contrast, the highest richness of wild bees (total 44 species) was recorded from the natural forest sites, which showed a discrete bee community composition compared to the remaining habitat types. There was no significant relationship between the bee species richness and the environmental variables, including the numbers of different plant life forms, coverage of canopy and ground vegetation, successional age of vegetation and land use type. At the landscape scale, open land use systems, including young rubber plantations, are assumed to increase the species richness of hoverflies; however, this might decrease wild bee diversity. The present land use change by rubber cultivation can be expected to have negative impacts on the native wild bee communities.  相似文献   

4.
The taxonomic diversity (TD) of tropical flora and fauna tends to increase during secondary succession. This increase may be accompanied by changes in functional diversity (FD), although the relationship between TD and FD is not well understood. To explore this relationship, we examined the correlations between the TD and FD of ants and forest age in secondary forests at the α‐ and β‐diversity levels using single‐ and multi‐trait‐based approaches. Our objectives were to understand ant diversity patterns and to evaluate the role of secondary forests in the conservation of biodiversity and in the resilience of tropical forests. Ant assemblages were sampled across a chronosequence in the Lacandon region, Mexico. All species were characterized according to 12 functional ecomorphological traits relevant to their feeding behavior. We found that TD and FD were related to forest age at the alpha level, but not at the beta level. α‐functional richness and divergence increased linearly with species richness and diversity, respectively. Also, the relationship between taxonomic and functional turnover was linear and positive. Our results indicated that functional traits were complementary across the chronosequence. The increase in FD was mainly driven by the addition of rare species with relevant traits. The older secondary forests did not recover all of the functions of old growth forest but did show a tendency to recovery. Because older successional stages support more TD and FD, we suggest developing agriculture and forestry management practices that facilitate rapid post‐agricultural succession and thereby better preserve the functionality of tropical forests.  相似文献   

5.
The relationship between biodiversity and ecosystem functioning (BEF) is one of the most concerned topics in ecology. However, most of the studies have been conducted in controlled experiments in grasslands, few observational field studies have been carried out in forests. In this paper, we report variations of species diversity, functional diversity and aboveground biomass (AGB) for woody plants (trees and shrubs) along a chronosequence of four successional stages (18-year-old fallow, 30-year-old fallow, 60-year-old fallow, and old-growth forest) in a tropical lowland rainforest recovered after shifting cultivation on Hainan Island, China. Fifty randomly selected sample plots of 20 m × 20 m were investigated in each of the four successional stages. Four functional traits (specific leaf area, wood density, maximum species height and leaf dry matter content) were measured for each woody plants species and the relationships between species/functional diversity and AGB during secondary succession were explored. The results showed that both plant diversity and AGB recovered gradually with the secondary succession. AGB was positively correlated with both species and functional diversity in each stage of succession. Consistent with many controlled experimental results in grasslands, our observational field study confirms that ecosystem functioning is closely related to biodiversity during secondary succession in species rich tropical forests.  相似文献   

6.
Land‐use change is the main cause of deforestation and degradation of tropical forest in Mexico. Frequently, these lands are abandoned leading to a mosaic of natural vegetation in secondary succession. Further degradation of the natural vegetation in these lands could be exacerbated by stochastic catastrophic events such as hurricanes. Information on the impact of human disturbance parallel to natural disturbance has not yet been evaluated for faunal assemblages in tropical dry forests. To evaluate the response of herpetofaunal assemblages to the interaction of human and natural disturbances, we used information of pre‐ and post‐hurricane herpetofaunal assemblages inhabiting different successional stages (pasture, early forest, young forest, intermediate forest, and old growth forest) of dry forest. Herpetofaunal assemblages were surveyed in all successional stages two years before and two years after the hurricane Jova that hit the Pacific Coast of Mexico on October 2011. We registered 4093 individuals of 61 species. Overall, there were only slight effects of successional stage, hurricane Jova or the interaction between them on abundance, observed species richness and diversity of the herpetofauna. However, we found marked changes in estimated richness and composition of frogs, lizards, and snakes among successional stages in response to hurricane Jova. Modifications in vegetation structure as result of hurricane pass promoted particular changes in each successional stage and taxonomic group (anurans, lizards, and snakes). Secondary forests at different stages of succession may attenuate the negative effects of an intense, short‐duration, and low‐frequency natural disturbance such as hurricane Jova on successional herpetofaunal trajectories and species turnover.  相似文献   

7.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.  相似文献   

8.
In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.  相似文献   

9.
Inter‐specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non‐trophic facilitation among species has received less attention. Cavity‐nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity‐producing wood boring beetles ‐ in terms of cavity diameters ‐ drives the size diversity of cavity‐nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non‐wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non‐wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity‐nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non‐trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community‐wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.  相似文献   

10.
To the discussion on secondary succession in tropical forests, we bring data on three under‐addressed issues: understory as well as overstory changes, continuous as opposed to phase changes, and integration of forest succession with indigenous fallow management and plant uses. Changes in vegetation structure and species composition were analyzed in secondary forests following swidden agriculture in a semideciduous forest of Bolivian lowlands. Twenty‐eight fallows, stratified by four successional stages (early = 1–5 yr, intermediate = 6–10 yr, advanced = 12–20 yr, and older = 22–36 yr), and ten stands of mature forests were sampled. The overstory (plants ≥5 cm diameter at breast height [DBH]) was sampled using a 20 × 50 m plot and the understory (plants <5 cm DBH) in three nested 2 × 5 m subplots. Semistructured interviews provided information on fallow management. Canopy height, basal area, and liana density of the overstory increased with secondary forest age. The early stage had the lowest species density and diversity in the overstory, but the highest diversity in the understory. Species composition and abundance differentiated mature forests and early successional stage from other successional stages; however, species showed individualistic responses across the temporal gradient. A total of 123 of 280 species were useful with edible, medicinal, and construction plants being the most abundant for both over‐ and understories. Most of Los Gwarayo preferred mature forests for making new swidden, while fallows were valuable for crops, useful species, and regenerating timber species.  相似文献   

11.
Forest succession can influence herbivore communities through changes in host availability, plant quality, microclimate, canopy structure complexity and predator abundance. It is not well known, however, if such influence is constant across years. Caterpillars have been reported to be particularly susceptible to changes in plant community composition across forest succession, as most species are specialists and rely on the presence of their hosts. Nevertheless, in the case of tropical dry forests, plant species have less defined successional boundaries than tropical wet forests, and hence herbivore communities should be able to persist across different successional stages. To test this prediction, caterpillar communities were surveyed during eight consecutive years in a tropical dry forest in four replicated successional stages in Chamela, Jalisco and Mexico. Lepidopteran species richness and diversity were equivalent in mature forests and early successional stages, but a distinctive caterpillar community was found for the recently abandoned pastures. Species composition tended to converge among all four successional stages during the span of eight years. Overall, our results highlight the importance of both primary and secondary forest for the conservation of caterpillar biodiversity at a landscape level. We also highlight the relevance of long‐term studies when assessing the influence of forest succession to account for across year variation in species interactions and climatic factors. Abstract in French is available with online material.  相似文献   

12.
Several species of arthropods inhabiting forest fragments interact with managed areas. The importance of such areas to biodiversity conservation, however, is not well established. Communities of solitary wasps and bees (Insecta: Hymenoptera) play a key role in agroecosystem functioning and they have been used in studies of biodiversity assessment in different land‐use types. We aimed to assess patterns of species richness and composition of solitary wasps and bees over a 1‐yr period in a gradient of decreasing land‐use intensity formed by pastures, alley croppings, young fallows, and old fallows using trap nests. Old fallows had the highest species richness of wasps and bees, harboring all bee species and 86 percent of wasp species occurring in the region, while the remaining land‐uses had similar species richness. Vegetation structure (tree richness) and relative humidity explained most of the variance for the species richness of wasps. For bees, however, there was no influence of environmental factors on the community among land‐use types, indicating better adaptability of this group to environmental variations related to land‐use. The composition of solitary wasp communities (but not those of bees) differed among land‐use types, and the occurrence of rare species in most cases was restricted to old fallow sites. In conclusion, the community of solitary wasps and bees is contingent on land‐use, with solitary wasps more sensitive to anthropized areas. For both groups, less anthropized areas harbor a greater richness and number of rare species while more intensively managed land‐use types harbor higher abundances.  相似文献   

13.
Fruit set of highland coffee increases with the diversity of pollinating bees   总被引:13,自引:0,他引:13  
The worldwide decline of pollinators may negatively affect the fruit set of wild and cultivated plants. Here, we show that fruit set of the self-fertilizing highland coffee (Coffea arabica) is highly variable and related to bee pollination. In a comparison of 24 agroforestry systems in Indonesia, the fruit set of coffee could be predicted by the number of flower-visiting bee species, and it ranged from ca. 60% (three species) to 90% (20 species). Diversity, not abundance, explained variation in fruit set, so the collective role of a species-rich bee community was important for pollination success. Additional experiments showed that single flower visits from rare solitary species led to higher fruit set than with abundant social species. Pollinator diversity was affected by two habitat parameters indicating guild-specific nesting requirements: the diversity of social bees decreased with forest distance, whereas the diversity of solitary bees increased with light intensity of the agroforestry systems. These results give empirical evidence for a positive relationship between ecosystem functions such as pollination and biodiversity. Conservation of rainforest adjacent to adequately managed agroforestry systems could improve the yields of farmers.  相似文献   

14.
Domestic livestock influence patterns of secondary succession across forest ecosystems. However, the effects of cattle on the regeneration of tropical dry forests (TDF) in Mexico are poorly understood, largely because it is difficult to locate forests that are not grazed by cattle or other livestock. We describe changes in forest composition and structure along a successional chronosequence of TDF stands with and without cattle (chronic grazing or exclusion from grazing for ~ 8 year). Forest stands were grouped into five successional stages, ranging from recently abandoned to mature forest, for a total of 2.7 ha of the sampled area. The absence of cattle increased woody plant (tree and shrub) density and species richness, particularly in mid-successional and mature forest stands. Species diversity and evenness were generally greater in sites where cattle were removed and cattle grazing in early successional stands reduced establishment and/or recruitment of new individuals and species. Removal of cattle from forest stands undergoing succession appears to facilitate a progressive and non-linear change of forest structure and compositional attributes associated with rapid recovery, while cattle browsing acts as a chronic disturbance factor that compromises the resilience and structural and functional integrity of the TDF in northwestern Mexico. These results are important for the conservation, management, and restoration of Neotropical dry forests.  相似文献   

15.
Much of the world's tropical forests have been affected by anthropogenic disturbance. These forests are important biodiversity reservoirs whose diversity, structure and function must be characterized across the successional sequence. We examined changes in structure and diversity along a successional gradient in the lowlands of New Guinea. To do this, we measured and identified all stems ≥5 cm diameter in 19 0.25 ha plots ranging in age from 3 to >50 yr since disturbance. We also measured plant functional traits related to establishment, performance, and competitive ability. In addition, we examined change in forest structure, composition, species diversity, and functional diversity through succession. By using rarefaction to estimate functional diversity, we compared changes in functional diversity while controlling for associated differences in stem and species density. Basal area and species density increased with stand age while stem density was highest in intermediate secondary forests. Species composition differed strongly between mature and secondary forests. As forests increased in basal area, community‐weighted mean wood density and foliar carbon increased, whereas specific leaf area and proportion of stems with exudate decreased. Foliar nitrogen peaked in medium‐aged forests. Functional diversity was highest in mature forests, even after accounting for differences in stem and species diversity. Our study represents one of the first attempts to document successional changes in New Guinea's lowland forest. We found robust evidence that as succession proceeds, communities occupy a greater range of functional trait space even after controlling for stem and species density. High functional diversity is important for ecological resiliency in the face of global change.  相似文献   

16.
  1. Analysis of the structure, diversity, and demographic dynamics of tree assemblages in tropical forests is especially important in order to evaluate local and regional successional trajectories.
  2. We conducted a long‐term study to investigate how the structure, species richness, and diversity of secondary tropical forests change over time. Trees (DBH ≥ 5 cm) in the Atlantic Forest of southern Brazil were sampled twice during a 10‐year period (2007 and 2017) in six stands (1 ha each) that varied in age from their last disturbance (25, 60, 75, 90, and more than 100 years). We compared forest structure (abundance and basal area), species richness, alpha diversity, demographic rates (mortality, recruitment, and loss or gain in basal area), species composition, spatial beta diversity, and temporal beta diversity (based on turnover and nestedness indices) among stand ages and study years.
  3. Demographic rates recorded in a 10‐year interval indicate a rapid and dynamic process of species substitution and structural changes. Structural recovery occurred faster than beta diversity and species composition recovery. The successional gradient showed a pattern of species trade‐off over time, with less spatial dissimilarity and faster demographic rates in younger stands. As stands grow older, they show larger spatial turnover of species than younger stands, making them more stochastic in relation to species composition. Stands appear to split chronologically to some extent, but not across a straightforward linear axis, reflecting stochastic changes, providing evidence for the formation of a nonequilibrium community.
  4. Policy implications. These results reiterate the complexity and variability in forest succession and serve as a reference for the evaluation and monitoring of local management and conservation actions and for defining regional strategies that consider the diversity of local successional trajectories to evaluate the effectiveness of restoration measures in secondary forests of the Atlantic Forest biome.
  相似文献   

17.
The development of forest succession theory has been based on studies in temperate and tropical wet forests. As rates and pathways of succession vary with the environment, advances in successional theory and study approaches are challenged by controversies derived from such variation and by the scarcity of studies in other ecosystems. During five years, we studied development pathways and dynamics in a chronosequence spanning from very early to late successional stages (ca. 1–60 years) in a tropical dry forest of Mexico. We (1) contrasted dynamic pathways of change in structure, diversity, and species composition with static, chronosequence-based trends, (2) examined how structure and successional dynamics of guilds of trees shape community change, and (3) assessed the predictability of succession in this system. Forest diversity and structure increased with time but tree density stabilized early in succession. Dynamic pathways matched chronosequence trends. Succession consisted of two tree-dominated phases characterized by the development and dynamics of a pioneer and a mature forest species guild, respectively. Pioneer species dominated early recruitment (until ca. 10 years after abandonment), and declined before slower growing mature-forest species became dominant or reached maximum development rates (after 40–45 years). Pioneers promoted their replacement early in succession, while mature-forest species recruited and grew constantly throughout the process, with their lowest mortality coinciding with the peak of pioneer abundance. In contrast to prevailing stochastic views, we observed an orderly, community driven series of changes in this dry forest secondary succession. Chronosequences thus represent a valuable approach for revealing system-specific successional pathways, formulating hypotheses on causes and mechanisms and, in combination with repeated sampling, evaluating the effects of vegetation dynamics in pathway variation.  相似文献   

18.
Wild bees are threatened by multiple interacting stressors, such as habitat loss, land use change, parasites, and pathogens. However, vineyards with vegetated inter‐rows can offer high floral resources within viticultural landscapes and provide foraging and nesting habitats for wild bees. Here, we assess how vineyard management regimes (organic vs. conventional; inter‐row vegetation management) and landscape composition determine the inter‐row plant and wild bee assemblages, as well as how these variables relate to functional traits in 24 Austrian and 10 South African vineyards. Vineyards had either permanent vegetation cover in untilled inter‐rows or temporary vegetation cover in infrequently tilled inter‐rows. Proportion of seminatural habitats (e.g., fallows, grassland, field margins) and woody structures (e.g., woodlots, single trees, tree rows) were used as proxies for landscape composition and mapped within 500‐m radius around the study vineyards. Organic vineyard management increased functional richness (FRic) of wild bees and flowering plants, with woody structures marginally increasing species richness and FRic of wild bees. Wild bee and floral traits were differently associated across the countries. In Austria, several bee traits (e.g., lecty, pollen collection type, proboscis length) were associated with flower color and symmetry, while in South African vineyards, only bees’ proboscis length was positively correlated with floral traits characteristic of Asteraceae flowers (e.g., ray–disk morphology, yellow colors). Solitary bee species in Austria benefitted from infrequent tillage, while ground nesting species preferred inter‐rows with undisturbed soils. Higher proportions of woody structures in surrounding landscapes resulted in less solitary and corbiculate bees in Austria, but more aboveground nesting species in South Africa. In both countries, associations between FRic of wild bees and flowering plants were positive both in organic and in conventional vineyards. We recommend the use of diverse cover crop seed mixtures to enhance plant flowering diversity in inter‐rows, to increase wild bee richness in viticultural landscapes.  相似文献   

19.
The use of timber harvest residue as an energy source is thought to have environmental benefits relative to food‐based crops, yet the ecological impact of this practice remains largely unknown. We assessed whether the abundance and diversity of wild bees (Apoidea) were influenced by the removal of harvest residue and associated soil compaction within managed conifer forest in western Oregon, USA. We sampled bees over two years (2014–2015) on study plots that were subjected to five treatments representing gradients in removal of harvest residue and soil compaction. We collected >7,500 bee specimens from 92 distinct species/morphospecies that represented five of the seven bee families. We trapped 3x more individuals in the second year of the study despite identical sampling effort in both years, with most trapped bees classified as ground‐nesting species. Members of the sweat bee family (Halictidae) comprised more than half of all specimens, and the most abundant genus was composed of metallic green bees (Agapostemon, 33.6%), followed by long‐horned bees (Melissodes, 16.5%), sweat bees (Halictus, 15.9%), and bumble bees (Bombus, 13.6%). In both years, abundance and observed species richness were greatest in the most intensive harvest residue treatment, with other treatments having similar values for both measures. Our study indicates that early successional managed conifer forest that has experienced removal of harvest residue can harbor a surprising diversity of wild bees, which are likely to have important contributions to the broader ecological community through the pollination services they provide.  相似文献   

20.
Bees require distinct foraging and nesting resources to occur in close proximity. However, spatial and temporal patterns in the availability and quantity of these resources can be affected by disturbances like wildfire. The potential for spatial or temporal separation of foraging and nesting resources is of particular concern for solitary wood‐cavity‐nesting bees as they are central‐place, short‐distance foragers once they have established their nest. Often the importance of nesting resources for bees have been tested by sampling foraging bees as a proxy, and nesting bees have rarely been studied in a community context, particularly postdisturbance. We tested how wood‐cavity‐nesting bee species richness, nesting success, and nesting and floral resources varied across gradients of wildfire severity and time‐since‐burn. We sampled nesting bees via nesting boxes within four wildfires in southwest Montana, USA, using a space‐for‐time substitution chronosequence approach spanning 3–25 years postburn and including an unburned control. We found that bee nesting success and species richness declined with increasing time postburn, with a complete lack of successful bee nesting in unburned areas. Nesting and floral resources were highly variable across both burn severity and time‐since‐burn, yet generally did not have strong effects on nesting success. Our results together suggest that burned areas may provide important habitat for wood‐cavity‐nesting bees in this system. Given ongoing fire regime shifts as well as other threats facing wild bee communities, this work helps provide essential information necessary for the management and conservation of wood‐cavity‐nesting bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号