首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

2.
3.
4.
To predict the effects of temperature changes on plant growth and performance, it is crucial to understand the impact of thermal history on leaf morphology, anatomy and physiology. Here, we document a comprehensive range of leaf phenotypes in 25/20 °C‐grown Arabidopsis thaliana plants that were shifted to 5 °C for up to 2 months. When warm‐grown, pre‐existing (PE) leaves were exposed to cold, leaf thickness increased due to an increase in mesophyll cell size. Leaves that were entirely cold‐developed (CD) were twice as thick (eight cell layers) as their warm‐developed (WD) counterparts (six layers), and also had higher epidermal and stomatal cell densities. After 4 d of cold, PE leaves accumulated high levels of total non‐structural carbohydrates (TNC). However, glucose and starch levels declined thereafter, and after 45 d in the cold, PE leaves exhibited similar TNC to CD leaves. A similar phenomenon was observed in δ13C and a range of photosynthetic parameters. In cold‐treated PE leaves, an increase in respiration (Rdark) with cold exposure time was evident when measured at 25 °C but not 5 °C. Cold acclimation was associated with a large increase in the ratio of leaf Rdark to photosynthesis. The data highlight the importance of understanding developmental thermal history in determining individual phenotypic traits.  相似文献   

5.
This study was carried out to better understand the role of salicylic acid (SA) applied before cold stress in the cold tolerance mechanism. Two barley (Hordeum vulgare) cultivars, cold-sensitive (Akhisar) and cold-tolerant (Tokak), were used and 0.1 mM SA was applied to 7-d-old barley seedlings growing under control conditions (20/18 °C). The seedlings were transferred to cold chamber (7/5 °C) at the age 14, 21, and 28 d. After three days, the leaves were harvested to determine the activities of apoplastic antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) and ice nucleation activity and electrophoretic patterns of apoplastic proteins. Cold treatment decreased the activities of all enzymes in cold-sensitive cultivar, however, it increased CAT and POX activities in cold-tolerant cultivar. Exogenous SA increased enzyme activities in both cultivars. Ice nucleation activity increased by cold treatment, especially in 17-d-old seedlings in both cultivars. In addition, SA treatment increased ice nucleation activity in all examined samplings in both cultivars. SA treatment caused accumulation or de novo synthesis of some apoplastic proteins. The results of the present study show that exogenous SA can improve cold tolerance by regulating the activities of apoplastic antioxidative enzymes, ice nucleation activity, and the patterns of apoplastic proteins.  相似文献   

6.
The effects of salicylic acid (SA) (0.01, 0.1 and 1 mM) and cold on freezing tolerance (freezing injury and ice nucleation activity) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) grown under control (20/18 °C for 15, 30 and 45-day) and cold (15/10 °C for 15-day, 10/5 °C for 30-day and 5/3 °C for 45-day) conditions. Cold acclimatisation caused a decrease of injury to leaf segments removed from the plants and subjected to freezing conditions. Exogenous SA also decreased freezing injury in the leaves grown under cold (15/10 °C) and control (15 and 30-day) conditions. Cold conditions (10/5 and 5/3 °C) caused an increase in ice nucleation activity by apoplastic proteins, which were isolated from the leaves. For the first time, it was shown that exogenous SA caused an increase in ice nucleation activity under cold (15/10 and 10/5 °C) and control conditions. These results show that salicylic acid can increase freezing tolerance in winter wheat leaves by affecting apoplastic proteins.  相似文献   

7.
Several apoplastic enzymes have been implicated in the control of elongation growth of plant cells. Among them, peroxidases contribute to both loosening and stiffening of the cell wall. They appear to be regulated by various mechanisms, including the action of extracellular inhibitors. To obtain evidence of the role of the enzyme–inhibitor interaction during leaf development, the intercellular washing fluids from Helianthus annuus leaves of different ages were isolated using standard methods of vacuum infiltration and centrifugation. Peroxidase activities, assessed using tetramethylbenzidine as substrate, increased during leaf development, reaching a maximum value after the leaves were fully expanded. An inhibitor, chemically characterised as ascorbate, co‐localised with the enzyme in the apoplast. Moreover, there was a strong negative correlation between the action of peroxidase and the micromolar concentration of ascorbate in the apoplastic fluid. The results show that in growing leaves, the in planta ascorbate concentration is able to restrain peroxidase enzyme activity. Then, at the time of growth cessation, the loss of extracellular ascorbate relieves the inhibition on this enzyme that contributes to wall fixation.  相似文献   

8.
9.
Activated oxygen species such as superoxide radicals, singlet oxygen, hydrogen peroxide and hydroxyl radicals can be produced in plants exposed to low, non-freezing, non-injurious temperatures. To prevent or alleviate oxidative injury, plants have evolved several mechanisms which include scavenging by natural antioxidants and enzymatic antioxidant systems such as superoxide dismutases, catalase and peroxidases. Although overproduction of hydrogen peroxide and increased tolerance to oxidative stress can be induced in wheat by low-temperature treatments, data concerning changes in the enzymatic antioxidant systems are almost absent. With the aim to provide this information, antioxidant enzyme (superoxide dismutases, catalase and peroxidases) activities were analysed in leaves and roots of Triticum aestivum cvs Brasilia (frost resistant in field) and Eridano (less frost resistant in field) seedlings grown at day/night temperatures of 24/22°C (control treatment) and 12/5°C (low-temperature treatment). Our data showed that superoxide dismutase activities were unaffected by low-temperature treatment both in leaves and roots. Catalase activity in leaves and roots was decreased in 12/5°C-grown seedlings, but Brasilia maintained higher catalase activity than Eridano. Differences were also observed in guaiacol peroxidase activities between control and acclimated seedlings: Higher guaiacol peroxidase activities were found in the leaves of 12/5°C-grown seedlings while in roots these activities were lower. Moreover, Brasilia guaiacol peroxidase activities were higher than Eridano. Superoxide dismutase and peroxidase zymogram analyses showed that synthesis of new isoforms was not induced by low-temperature treatment. Changes in the activities of antioxidant enzymes induced by cold acclimation support the hypothesis that a frost-resistant wheat cultivar, in comparison with a less frost-resistant one, maintains a better defence against activated oxygen species during low-temperature treatment.  相似文献   

10.
Influenza virus‐like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant‐based biotechnology allows for the large‐scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium‐mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post‐Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG‐I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin‐based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing.  相似文献   

11.
Abrupt temperature reduction in winter wheat at either autumn seedling stage prior to vernalisation or early spring crown stage can cause severe crop damage and reduce production. Many studies have reported the physiological and molecular mechanisms underlying cold acclimation in winter wheat by comparing it with spring wheat. However, processes associated with abrupt temperature reduction in autumn seedling stage prior to vernalisation in winter wheat are less understood. In this study, physiological and molecular responses of winter wheat seedlings to abrupt low temperature (LT) stress were characterised in the relatively LT‐tolerant winter wheat cultivar Shixin 828 by comparing it with the relatively LT‐sensitive cultivar Shiluan 02‐1 using a combination of physiological, proteomics and biochemical approaches. Shixin 828 was tolerant to abrupt LT stress, while Shiluan 02‐1 exhibited high levels of reactive oxygen species (ROS) and leaf cell death. Significant increases in relative abundance of antioxidant‐related proteins were found in Shixin 828 leaves, which correlate with observed higher antioxidant enzyme activity in Shixin 828 compared to Shiluan 02‐1. Proteomics analysis also indicated that carbohydrate metabolism‐related proteins were more abundant in Shiluan 02‐1, correlating with observed accumulation of soluble sugars in Shiluan 02‐1 leaves. Amino acid analysis revealed a strong response to LT stress in wheat leaves. A negative effect of exogenous sucrose on LT tolerance was also found. This study indicates that high ROS scavenging capacity and high abundance of photosynthesis‐related proteins might play a role in winter wheat response to abrupt LT stress. In contrast, excess accumulation of soluble sugars might be disadvantageous for LT tolerance in the wheat cultivar Shiluan 02‐1.  相似文献   

12.
Water relations, leaf morphology and the chemical composition of cell walls in irrigated and unirrigated plants of three durum wheat eultivars were measured at two growth stages (booting and flowering). Plant response to water stress differed at the two stages: cell wall elasticity increased at booting and osmotic potential values decreased at flowering; this may be due to the changes in stress history, leaf development and plant growth stage between the two harvests. Leaf tissue characteristics were modified by water stress only at flowering: accumulation of fibrous constituents and hemicellulose in the cell walls, reduction of acid detergent fiber (ADF) per unit of leaf area, increase in specific leaf weight (SLW), decrease in turgid weight/dry weight ratio (TW/DW) and alteration in mesophyll cell morphology (cell area / ceil perimeter ratio) were observed.
Generally, cv. Valforte (the less drought-resistant cultivar) had the greatest mesophyll cell area and perimeter and it had greater values of neutral detergent fiber (NDF) at the booting stage than cv. Appulo. Reactivity to water stress differed in the eultivars: Valforte showed the greatest increase in hemicellulose content and decrease in cell dimensions under drought at flowering.
No significant relationships between osmotic potential and mesophyll cell characters were observed; there were no correlations among cell wall elasticity, cell morphology and the chemical components of leaf tissue. The total fiber content and the hemicellulose per unit of leaf area were correlated with the TW/DW ratio at flowering. This parameter decreased more in plants subjected to water stress owing to accumulation of hemicellulose. Correlations between leaf structural constituents and $$ suggest that the absorptive capacity of the cell wall may significally affect the osmotic volume of the cell.  相似文献   

13.
14.
  • High temperature induces several proteins in plants that enhance tolerance to high temperature shock. The fate of proteins synthesised in microbial cells or secreted into culture media by interacting microbes has not been fully elucidated. The present investigation aimed to characterise plant growth‐promoting rhizobacteria (PGPR) isolated from the rhizosphere of wheat genotypes (differing in tolerance to high temperature stress) and evaluate their performance as bioinoculant for use in wheat.
  • Four bacterial strains, viz. Pseudomonas brassicacearum, Bacillus thuringiensis, Bacillus cereus strain W6 and Bacillus subtilis, were isolated from the rhizosphere of heat‐stressed and unstressed wheat genotypes. The wheat genotypes were exposed to high temperature stress at 45 °C for 10 days (3 h daily) at pre‐anthesis phase. Isolates were identified on the basis of morphology and biochemical characteristics, 16S rRNA gene sequencing and whole cell protein profiles. Results were further complemented by size exclusion chromatography (SEC) with fast protein liquid chromatography (FPLC) and SDS PAGE of 80% ammonium sulphate precipitates of the cell‐free supernatants.
  • Isolates were positive for catalase, oxidases and antimicrobial activity . P. brassicacearum from the rhizosphere of the heat‐tolerant genotype was more efficient in phosphate solubilisation, bacteriocin production, antifungal and antibacterial activity against Helminthosporium sativum, Fusarium moniliforme and Klebsiella pneumonia, respectively. The inoculated seedlings had significantly higher root and shoot fresh weight, enhanced activity of antioxidant enzymes, proline and protein content. Total profiling of the culture with SDS‐PAGE indicated expression of new protein bands in 95 kDa in P. brassicacearum.
  • Temperature‐induced changes in PGPR isolates are similar to those in the host plant. P. brassicacearum may be a good candidate for use in biofertiliser production for plants exposed to high temperature stress.
  相似文献   

15.
Effects of low‐temperature stress, cold acclimation and growth at high irradiance in a spring (Triticum aestivum L. cv. Katepwa) and a winter wheat (Triticum aestivum L. cv. Monopol) were examined in leaves and crowns with respect to the sucrose utilisation and carbon allocation. Light‐saturated and carbon dioxide (CO2)‐saturated rates of CO2 assimilation were decreased by 50% in cold‐stressed spring and winter wheat cultivars. Cold‐ or high light‐acclimated Katepwa spring wheat maintained light‐saturated rates of CO2 assimilation comparable to those of control spring wheat. In contrast, cold‐ or high light‐acclimated winter wheat maintained higher light and CO2‐saturated rates of CO2 assimilation than non‐acclimated controls. In leaves, during either cold stress, cold acclimation or acclimation to high irradiance, the sucrose/starch ratio increased by 5‐ to 10‐fold and neutral invertase activity increased by 2‐ to 2.5‐fold in both the spring and the winter wheat. In contrast, Monopol winter wheat, but not Katepwa spring wheat, exhibited a 3‐fold increase in leaf sucrose phosphate synthase (SPS) activity, a 4‐fold increase in sucrose:sucrose fructosyl transferase activity and a 6.6‐fold increase in acid invertase upon cold acclimation. Although leaves of cold‐stressed and high light‐grown spring and winter wheat showed 2.3‐ to 7‐fold higher sucrose levels than controls, these plants exhibited a limited capacity to adjust either sucrose phosphate synthase or sucrose synthase activity (SS[s]). In addition, the acclimation to high light resulted in a 23–31% lower starch abundance and no changes at the level of fructan accumulation in leaves of either winter or spring wheat when compared with controls. However, high light‐acclimated winter wheat exhibited a 1.8‐fold higher neutral invertase activity and high light‐acclimated spring wheat exhibited an induction of SS(d) activity when compared with controls. Crowns of Monopol showed higher fructan accumulation than Katepwa upon cold and high light acclimation. We suggest that the differential adjustment of CO2‐saturated rates of CO2 assimilation upon cold acclimation in Monopol winter wheat, as compared with Katepwa spring wheat, is associated with the increased capacity of Monopol for sucrose utilisation through the biosynthesis of fructans in the leaves and subsequent export to the crowns. In contrast, the differential adjustment of CO2‐saturated rates of CO2 assimilation upon high light acclimation of Monopol appears to be associated with both increased fructan and starch accumulation in the crowns.  相似文献   

16.
Resistance to pink snow mould, caused by Microdochium nivale, was investigated in four resistant winter wheat lines from the USDA World Cereal Collection (CI9342, CI14106, PI173440 and PI181268) and three Nordic wheat lines (Bjørke, Rida and V1004). Pink snow mould resistance was tested in non‐hardened and cold‐hardened plants incubated under artificial snow cover and in detached leaf segments mounted on water agar and incubated at either 3°C in darkness or at room temperature with light during the day. The wheat lines CI9342, CI14106 and PI181268 were more resistant than the Nordic lines, both before and after cold hardening. Thus, although cold hardening strongly increases the level of snow mould resistance in all the wheat lines, some resistance mechanisms are also present prior to cold hardening in some of the resistant lines. CI9342, CI14106 and PI181268 also had a higher level of resistance than the other lines in the detached leaf assay, indicating that these lines have some resistance mechanisms acting in the leaves. The resistance of PI173440 was expressed only in intact hardened plants and not in non‐hardened plants or in detached leaves. This indicates that this line relies on cold hardening‐related changes in the crown for its resistance. In the detached leaf assay the rate of lesion development varied greatly between leaves of different order. The highest correlation with the whole plant test was obtained when using secondary leaves and incubation at 3°C in the dark.  相似文献   

17.
For biofuel applications, synthetic endoglucanase E1 and xylanase (Xyn10A) derived from Acidothermus cellulolyticus were transiently expressed in detached whole sunflower (Helianthus annuus L.) leaves using vacuum infiltration. Three different expression systems were tested, including the constitutive CaMV 35S‐driven, CMVar (Cucumber mosaic virus advanced replicating), and TRBO (Tobacco mosaic virus RNA‐Based Overexpression Vector) systems. For 6‐day leaf incubations, codon‐optimized E1 and xylanase driven by the CaMV 35S promoter were successfully expressed in sunflower leaves. The two viral expression vectors, CMVar and TRBO, were not successful although we found high expression in Nicotiana benthamiana leaves previously for other recombinant proteins. To further enhance transient expression, we demonstrated two novel methods: using the plant hormone methyl jasmonic acid in the agroinfiltration buffer and two‐phase optimization of the leaf incubation temperature. When methyl jasmonic acid was added to Agrobacterium tumefaciens cell suspensions and infiltrated into plant leaves, the functional enzyme production increased 4.6‐fold. Production also increased up to 4.2‐fold when the leaf incubation temperature was elevated above the typical temperature, 20°C, to 30°C in the late incubation phase, presumably due to enhanced rate of protein synthesis in plant cells. Finally, we demonstrated co‐expression of E1 and xylanase in detached sunflower leaves. To our knowledge, this is the first report of (co)expression of heterologous plant cell wall‐degrading enzymes in sunflower. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:905–915, 2014  相似文献   

18.
19.
  • Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
  • Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
  • Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
  • These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
  相似文献   

20.
Organelles change their subcellular positions in response to various environmental conditions. Recently, we reported that cold treatments alter the intracellular position of chloroplasts and nuclei (cold positioning) in the fern Adiantum capillus‐veneris; chloroplasts and nuclei localized to the periclinal cell wall relocated to anticlinal cell wall after cold treatments. To further understand organelle positioning under cold conditions, we studied cold‐induced organelle relocation in the liverwort Marchantia polymorpha L. When sporelings and gemmmalings were treated under low temperature (5 °C), chloroplast cold positioning response was successfully induced both in the sporelings and the gemmmalings of M. polymorpha. Using a genetic transformation, nuclei, mitochondria or peroxisomes were visualized with a fluorescent protein, and the transgenic gemmmalings were incubated under the cold condition. Nuclei and peroxisomes, but not mitochondria, clearly relocated from the periclinal cell wall to the anticlinal cell wall after cold treatments. Our findings suggest that several organelles concurrently change their positions in the liverwort cell to cope with cold temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号