首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.  相似文献   

2.
To investigate the mechanism by which nitric oxide (NO) induces cell death in colon cancer cells, we compared two types of colon cancer cells with different p53 status: HCT116 (p53 wild-type) cells and SW620 (p53-deficient) cells. We found that S-nitrosoglutathione (GSNO), the NO donor, induced apoptosis in both types of colon cancer cells. However, SW620 cells were much more susceptible than HCT116 cells to apoptotic death by NO. We investigated the role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 kinase on NO-induced apoptosis in both types of colon cancer cells. GSNO treatment effectively stimulated activation of the ERK1/2 and p38 kinase in both types of cells. In HCT116 cells, pretreatment with PD98059, an inhibitor of ERK1/2, or SB203580, an inhibitor of p38 kinase, had no marked effect on GSNO-induced apoptosis. However, in SW620 cells, SB203580 significantly reduced the NO-induced apoptosis, whereas PD098059 increases NO-induced apoptosis. Furthermore, we found evidence of cell cycle arrest of the G0/G1 phase in SW620 cells but not in HCT116 cells. Inhibition of ERK1/2 with PD098059, or of p38 kinase with SB203580, reduced the GSNO-induced cell cycle arrest of the G0/G1 phase in SW620 cells. We therefore conclude that NO-induced apoptosis in colon cancer cells is mediated by a p53-independent mechanism and that the pathways of ERK1/2 and p38 kinase are important in NO-induced apoptosis and in the cell cycle arrest of the G0/G1 phase.  相似文献   

3.
Chen CJ  Makino S 《Journal of virology》2004,78(11):5658-5669
Mouse hepatitis virus (MHV) replication in actively growing DBT and 17Cl-1 cells resulted in the inhibition of host cellular DNA synthesis and the accumulation of infected cells in the G0/G1 phase of the cell cycle. UV-irradiated MHV failed to inhibit host cellular DNA synthesis. MHV infection in quiescent 17Cl-1 cells that had been synchronized in the G0 phase by serum deprivation prevented infected cells from entering the S phase after serum stimulation. MHV replication inhibited hyperphosphorylation of the retinoblastoma protein (pRb), the event that is necessary for cell cycle progression through late G1 and into the S phase. While the amounts of the cellular cyclin-dependent kinase (Cdk) inhibitors p21Cip1, p27Kip1, and p16INK4a did not change in infected cells, MHV infection in asynchronous cultures induced a clear reduction in the amounts of Cdk4 and G1 cyclins (cyclins D1, D2, D3, and E) in both DBT and 17Cl-1 cells and a reduction in Cdk6 levels in 17Cl-1 cells. Infection also resulted in a decrease in Cdk2 activity in both cell lines. MHV infection in quiescent 17Cl-1 cells prevented normal increases in Cdk4, Cdk6, cyclin D1, and cyclin D3 levels after serum stimulation. The amounts of cyclin D2 and cyclin E were not increased significantly after serum stimulation in mock-infected cells, whereas they were decreased in MHV-infected cells, suggesting the possibility that MHV infection may induce cyclin D2 and cyclin E degradation. Our data suggested that a reduction in the amounts of G1 cyclin-Cdk complexes in MHV-infected cells led to a reduction in Cdk activities and insufficient hyperphosphorylation of pRb, resulting in inhibition of the cell cycle in the G0/G1 phase.  相似文献   

4.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.  相似文献   

5.
We hypothesized that C-reactive protein (CRP) may affect the cell cycle and induce apoptotic changes of monocytes. CRP (∼25 μg/ml) significantly increased expressions of B-cell translocation gene 2 (BTG2) mRNA and protein in human monocytes through pathways involving CD32/NADPH oxidase 2/p53, which eventually induced G2/M phase arrest and apoptotic cell death. Such pro-apoptotic effect of CRP was not found in thioglycollate-elicited intraperitoneal monocytes/macrophages harvested from BTG2-knockout male C57BL/6 mice (n = 5). Within atheromatous plaques obtained from CRP-transgenic male LDLR−/− C57BL/6 mice (n = 5) and human coronary arteries, BTG2 co-localized with CRP, p53 and monocytes/macrophages. Therefore the pro-apoptotic pathway of CRP-CD32-Nox2-p53-BTG2 may contribute to the retardation of the atherogenic process.  相似文献   

6.
Studies have shown that polycystin-1, encoded by PKD1, the major ADPKD, may have a central role in regulating both apoptosis and proliferation, which could prevent the malignant transformation of affected cells. However, as a putative tumor suppressor, direct studies on the possibility that polycystin-1 may play a role in cancer cells' biological properties have not yet been reported. We have demonstrated that the apoptosis of cancer cells was induced by overexpression of polycystin-1. After transfection with polycystin-1, three cancer cell lines, HepG2, A549, and SW480, showed significantly increased apoptosis compared with the respective control groups. This was accompanied by cell cycle arrest at G(0)/G(1) phase, whereas cell proliferation was not significantly affected. Overexpression of polycystin-1 induces apoptosis in cancer cells, at least partially, through Wnt and a caspase-dependent pathway.  相似文献   

7.
Two cDNA codings for glycolytic enzymes were cloned from a cDNA library constructed from the schizont stage of the avian parasite Eimeria tenella. Enolase and pyruvate kinase cDNA were fully sequenced and compared with sequences of enzymes from other organisms. Although these enzymes were already detected in the sporozoite stage, their expression was enhanced during the first schizogony in accordance with the anaerobic conditions of this part of the life cycle of the parasite. Under activating conditions, microscopic observations suggest that these glycolytic enzymes were relocalised inside sporozoites and moreover were in part secreted. The enzymes were also localised at the apex of the first generation of merozoites. Enolase was partly observed inside the nucleus of sporozoites and schizonts. Taken together, these results suggest that glycolytic enzymes not only have a function in glycolysis during anaerobic intracellular stages but may also participate in the invasion process and, for enolase, in the control of gene regulation.  相似文献   

8.
9.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

10.
11.
ObjectivesKeloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids.Materials and MethodsWe evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs.ResultsWe discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro.ConclusionsThese findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.

Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Here, we discovered that PLK4 is a potential target for the treatment of keloids. PLK4 was overexpressed in keloid dermal samples and keloid fibroblasts (KFs) compared with adjacent normal skin samples and normal skin fibroblasts derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by a highly selective inhibitor, centrinone B (Cen‐B), suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase via the p53/p21/Cyclin D1 pathway in vitro. These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.  相似文献   

12.
The cytotoxicity and antioxidant activity on human hepa toma cell line HepG2 of three flavonoids homogenous com pounds from tartary buckwheat seeds and bran, namely quercetin, isoquercetin, and rutin, were investigated. The total antioxidant competency detection results indicated that the antioxidant capacity of quercetin was the strongest in a biological response system. A [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide] assay showed that quercetin exhibited the strongest cytotoxic effects against the HepG2 cell line. Flow cytometric analysis indicated that quercetin significantly increased the production of reactive oxygen species, and led to the G2/M phase arrest accom panied by an increase of apoptotic cell death after 48 h of incubation. Quercetininduced cell apoptosis was shown to involve p53 and p21 upregulation, Cyclin D1, Cdk2, and Cdk7 downregulation. These results suggested that the in duction of G2/M arrest, apoptosis, and cell death by quer cetin may associate with increased expression of p53 and p21, decrease of Cyclin D1, Cdk2, and Cdk7 levels, and generation of reactive oxygen species in cells. This study will help to better understand and fully utilize medicinal resources of plant flavonoids.  相似文献   

13.
We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC(50) concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G(0)/G(1) cell cycle arrest during the phthalocyanine PDT-mediated response.  相似文献   

14.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.  相似文献   

15.
The major Smad pathways serve in regulating the expression of genes downstream of TGFbeta signals. In this study, we examined the effects of sustained Smad7 expression in cultured cells. Interestingly, Smad7 caused various mesenchymal cells, including NIH3T3 fibroblast and ST2 bone-marrow stromal cells, to undergo a marked morphological alteration into a flattened cell shape, but kept them alive for as long as 60 days. Furthermore, Smad7 arrested the proliferation of the cells even before they reached confluence. These cells became quiescent in G0/G1 phase and accumulated a hypophosphorylated form of retinoblastoma. The cytostatic effect of Smad7 was closely associated with a preceding decrease in the levels of G1 cyclins, such as cyclin D1 and cyclin E. Accordingly, ectopic cyclin E was able to overcome the Smad7-induced arrest of proliferation. These results indicate that Smad7 functions upstream of G1 cyclins and suggest a novel role for Smad7 as an antiproliferative factor. In contrast to the growth of mesenchymal cells, that of epithelial cells was little susceptible to Smad7. The present findings raise the possibility that a link between Smad7 and the G1 to S phase transition may also contribute to the cell cycle control by certain Smad7-inducing stimuli in a cell-type-dependent fashion.  相似文献   

16.
Xiang T  Li L  Yin X  Yuan C  Tan C  Su X  Xiong L  Putti TC  Oberst M  Kelly K  Ren G  Tao Q 《PloS one》2012,7(1):e29783

Background

Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.

Methodology/Principal Findings

We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.

Conclusions/Significance

UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.  相似文献   

17.
18.
Hepatocellular carcinoma is one of the most common cancers in worldwide. We previously reported a novel thienopyridine derivative 3-amino-6-(3,4-dichlorophenyl) thieno[2,3-b]pyridine-2-carboxamide (SKLB70359) which possesses anticancer activity against hepatocellular carcinoma. In present study, we further investigated its anticancer activity and possible mechanism. The SKLB70359 treatment decreased the viability of a panel of hepatocellular carcinoma cell lines in a concentration- and time-dependent manner with IC(50) 0.4 ~ 2.5 μM. The mechanism study showed that SKLB70359 induced G0/G1 cell cycle arrest and then led to apoptotic cell death of HepG2 cell. The SKLB70359 induced G0/G1 cell cycle arrest was characterized by down-regulation of cyclin-dependent kinase 2 (CDK2), CDK4, CDK6 expression and up-regulation of p53, p21(WAF1). Activating of caspase-3 and caspase-9 was also observed. Meanwhile, proliferation inhibitory effect of SKLB70359 was associated with decreased level of phosphorylated p44/42 mitogen activated protein kinase (p44/42 MAPK) and phosphorylated retinoblastoma protein (Rb). Moreover, SKLB70359 exhibit less toxicity to non-cancer cells than tumor cells. In conclusion, the findings in this study suggested that SKLB70359 have potential anticancer efficacy via G0/G1 cell cycle arrest and apoptosis induction. Its potential to be a candidate of anticancer agent is worth being further investigated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号