首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   

2.
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins.  相似文献   

3.
Integrating multiple facets of biodiversity to describe spatial and temporal distribution patterns is one way of revealing the mechanisms driving community assembly. We assessed the species, functional, and phylogenetic composition and structure of passerine bird communities along an elevational gradient both in wintering and breeding seasons in the Ailao Mountains, southwest China, in order to identify the dominant ecological processes structuring the communities and how these processes change with elevation and season. Our research confirms that the highest taxonomic diversity, and distinct community composition, was found in the moist evergreen broadleaf forest at high elevation in both seasons. Environmental filtering was the dominant force at high elevations with relatively cold and wet climatic conditions, while the observed value of mean pairwise functional and phylogenetic distances of low elevation was constantly higher than expectation in two seasons, suggested interspecific competition could play the key role at low elevations, perhaps because of relative rich resource result from complex vegetation structure and human‐induced disturbance. Across all elevations, there was a trend of decreasing intensity of environmental filtering whereas increasing interspecific competition from wintering season to breeding season. This was likely due to the increased resource availability but reproduction‐associated competition in the summer months. In general, there is a clear justification for conservation efforts to protect entire elevational gradients in the Ailao Mountains, given the distinct taxonomic, functional, and phylogenetic compositions and also elevational migration pattern in passerine bird communities.  相似文献   

4.
Tropical forests harbor diverse ecological communities of plants and animals that are organized in complex interaction networks. The diversity and structure of plant–animal interaction networks may change along elevational gradients and in response to human‐induced habitat fragmentation. While previous studies have analyzed the effects of elevation and forest fragmentation on species interaction networks in isolation, to our knowledge no study has investigated whether the effects of forest fragmentation on species interactions may differ along elevational gradients. In this study, we analyzed main and interaction effects of elevation and forest fragmentation on plant–frugivore interaction networks at plant and bird species level. Over a period spanning two years, we recorded plant–frugivore interactions at three elevations (1000, 2000 and 3000 m a.s.l.) and in two habitat types (continuous and fragmented forest) in tropical montane forests in southern Ecuador. We found a consistent effect of elevation on the structure of plant–frugivore networks. We observed a decrease in the number of effective bird partners of plants and, thus, a decline in the redundancy of bird species with increasing elevation. Furthermore, bird specialization on specific plant partners increased towards high elevations. Fragmentation had a relatively weak effect on the interaction networks for both plant and bird species, but resulted in a significant increase in bird specialization in fragmented forests at high elevations. Our results indicate that forest fragmentation may have stronger effects on plant–frugivore interaction networks at high compared to low elevations because bird species richness declined more steeply towards high elevations than plant species richness. We conclude that conservation efforts should prioritize the maintenance of consumer diversity, for instance by maintaining stretches of continuous forest. This applies in particular to species‐poor communities, such as those at high elevations, as the ecological processes in these communities seem most sensitive towards forest fragmentation.  相似文献   

5.
Many species show evidence of climate‐driven distribution shifts towards higher elevations, but given the tremendous variation among species and regions, we lack an understanding of the community‐level consequences of such shifts. Here we test for signatures of climate warming impacts using a repeat survey of semi‐permanent vegetation plots in 1970 and 2012 in a montane protected area in southern Québec, Canada, where daily maximum and minimum temperatures have increased by ∼1.6°C and ∼2.5°C over the same time period. As predicted, the abundance‐weighted mean elevations of species distributions increased significantly over time (9 m/decade). A community temperature index (CTI) was calculated as the abundance‐weighted mean of the median temperature across occurrences within each species geographic range in eastern North America. CTI did not vary significantly over time, although the raw magnitude of change (+ 0.2°C) matched the expectation based on the upward shift in distributions of 9 m/decade. Species composition of high elevation sites converged over time toward that observed at low elevation, although compositional changes at low elevation sites were more modest. As a consequence, the results of a multivariate analysis showed a decline in among‐plot compositional variability (i.e. beta diversity) over time, thus providing some of the first empirical evidence linking climate warming with biotic homogenization. Finally, plot‐scale species richness showed a marked increase of ∼25% on average. Overall, elevational distribution shifts, biodiversity change, and biotic homogenization over the past four decades have been consistent with predictions based on climate warming, although the rate of change has been relatively slow, suggesting substantial time lags in biotic responses to climate change.  相似文献   

6.
Sean O'Donnell 《Biotropica》2017,49(5):665-674
Mixed‐species assemblages can involve positive and negative interactions, but uncertainty about high‐value patchy resources can increase the value of information sharing among heterospecific co‐foragers. I sampled species composition of bird‐flocks attending army‐ant raids in three adjacent elevation zones in Costa Rica, across multiple years, to test for positive and negative associations among raid‐attending bird species. My goal was to test whether the most frequent and specialized raid‐attending species showed evidence of facilitating or excluding other bird species. I quantified elevational variation in avian community composition at raids, then asked whether species composition was associated with variation in flock characteristics (flock size and species richness). I identified the most frequent raid‐attending species (those that attended raids most frequently relative to their mist‐net capture rates), and bird species that performed specialized army ant‐following behavior (bivouac‐checking, which allows birds to memorize and track mobile army‐ant colonies). There was significant turnover of bird species among zones (including the frequent and specialized attendants); patterns of species overlap suggested a gradual transition from a Pacific‐slope to an Atlantic‐slope raid‐attending bird fauna. Raid‐attendance frequency was positively correlated with bivouac‐checking behavior. With few exceptions, the most frequent raid‐attending bird species, and the bivouac‐checking species, also participated in the most species‐rich flocks. High species‐gregariousness suggests many of the frequently attending and/or bivouac‐checking species functioned as core flock members. However, some bird species pairs were significantly negatively associated at raids. Despite species turnover, per‐flock numbers of birds at raids did not differ among geographic zones, but flocks on the Pacific‐slope were heavier because larger bodied bird species attended raids. Previous studies showed that the size (biomass) of bird‐flocks corresponds to the amount of food the birds kleptoparasitize from ant raids, and the heavier Pacific‐slope bird‐flocks could have greater negative kleptoparasitic impacts.  相似文献   

7.
For any conservation strategy to be effective, it must be preceded by knowledge of how diversity is configured within the area of interest. Here, data from 40 savanna-grassland sites were used to examine how plant biodiversity and species composition varied across spatial scales at the Kalakad-Mundanthurai Tiger Reserve (KMTR), south India. Grasslands surveyed contained 278 plant species, and were characterized by high spatial variability in species association patterns. Fourteen distinct community assemblages were identified, organized primarily along an elevation gradient in the reserve. Overall, grasslands at KMTR were characterized by the dominance of a few, widespread species. The bulk of species richness, however, resulted from subordinate species with fairly restricted distributions. At low elevations, grasslands had high species richness and species composition differed greatly between sites. Mid-elevation grasslands contained about half the number of species present at low elevations, but sites were more similar in species composition. Richness of high-elevation grasslands was a third of that found at low elevations, but different sites harbored unique sets of species. Herbivore use of grasslands varied between communities and showed patterns that coincided with elevation. Herbivore use of low-elevation communities was high albeit variable, of mid-elevation sites was consistently low, and increased at higher elevations. Tall grass communities were the least utilized by herbivores at all elevations. Most species surveyed were rare and restricted in their distribution suggesting that conservation efforts must, perforce, encompass the entire reserve. However, differences in the structuring of diversity across elevations, and in herbivore use of grasslands, suggest that conservation efforts can be partitioned differentially across locations, specifically targeting low and high elevation grasslands in the reserve.  相似文献   

8.
Harboring many range‐restricted and specialized species, high elevation tropical cloud forests are diverse habitats represented in many protected areas. Despite this, many such areas receive little practical protection from deforestation and land conversion. Moreover, montane species may be more sensitive to climate change owing to various factors affecting community assembly across elevational gradients. Few studies have used annual monitoring to assess how biological communities in cloud forests may be shifting in response to habitat or climate change or assessed the efficacy of protected areas in buffering these effects. We analyzed avifaunal community trends in a 10‐yr dataset of constant‐effort bird point‐count data in a cloud forest national park in Honduras, Central America. We found that species richness and diversity increased at higher elevations, but decreased at lower elevations. Abundances of most dietary and forest‐dependency groups exhibited similar trends, and many key cloud forest species shifted upslope and/or increased in abundance. Taken together, our results suggest that the avian community is moving upslope and species composition is changing. Results for species richness and diversity were similar when only nondegraded transects were considered, suggesting the role of climate change as an important driver. At lower elevations, however, many species may be negatively affected by increased habitat degradation, favoring species with low forest dependency. Continued habitat conversion and climate change could push the cloud forest bird community further upslope, potentially resulting in increased competition, mortality, and even extirpation of some species. Increased protection is unlikely to mitigate the effects of climate change.  相似文献   

9.
Abstract. Species composition patterns and vegetation-environment relationships were quantified for high-elevation rock outcrops of the Southern Appalachian Mountains, an infrequent and insular habitat in a forested landscape. Outcrops occur over a wide geographic range encompassing extensive variation in both geology and climate. Geographic-scale factors interact with site-scale factors to produce variation in vegetation among outcrops. Similarly, site-scale factors interact with micro-scale factors to produce variation in vegetation within outcrops. To provide a quantitatively-based classification of outcrop vegetation we used a TWINSPAN analysis of 154 100-m2 plots. We recognized nine communities that primarily correspond to different combinations of elevation, bedrock type, geography, and moisture. Within outcrops of a single bedrock type, vegetation composition of 100-m2 plots was consistently correlated with elevation and solar radiation, but relationships to soil nutrients varied with bedrock type. Both site-scale (100 m2) factors (e.g. elevation, slope, aspect, and bedrock type) and plot-scale (1-m2) microsite factors (e.g. soil depth, vegetation height, soil nutrients) were strongly correlated with species composition at the 1-m2 level. Environment can be used to predict composition more effectively for 100-m2 plots on a single bedrock type than either across bedrock types or at a 1-m2 scale. Composition-environment relationships resemble those described for outcrop systems from other regions with pronounced topographic relief more than they do those described for the nearby but flatter and lower-elevation outcrops of the Southeastern Piedmont. There is strong spatial autocorrelation in this community, perhaps owing to dispersal limitation. Consequently, a comprehensive conservation strategy must include reservation of both a range of geologic types and a range of geographic locations.  相似文献   

10.
Mountain regions are globally important areas for biodiversity but are subject to multiple human‐induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high‐elevation, mountain specialist and generalist species, based on the proportion of their breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long‐term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta‐analysis did not find a consistent direction in elevation change. A meta‐analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy‐makers should influence legislation to develop efficient agri‐environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.  相似文献   

11.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

12.
Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat characteristics. We therefore developed statistical models of 147 bird species distributions in the eastern United States, using climate, elevation, and the distributions of 39 tree species to predict contemporary bird distributions. We used randomForest, a robust regression‐based decision tree ensemble method to predict contemporary bird distributions. These models were then projected onto three models of climate change under high and low emission scenarios for both climate and the projected change in suitable habitat for the 39 tree species. The resulting bird species models indicated that breeding habitat will decrease by at least 10% for 61–79 species (depending on model and emissions scenario) and increase by at least 10% for 38–52 species in the eastern United States. Alternatively, running the species models using only climate/elevation (omitting tree species), we found that the predictive power of these models was significantly reduced (p<0.001). When these climate/elevation‐only models were projected onto the climate change scenarios, the change in suitable habitat was more extreme in 60% of the species. In the end, the strong associations with vegetation tempers a climate/elevation‐only response to climate change and indicates that refugia of suitable habitat may persist for these bird species in the eastern US, even after the redistribution of tree species. These results suggest the importance of interacting biotic processes and that further fine‐scale research exploring how climate change may disrupt species specific requirements is needed.  相似文献   

13.
以泰山南北坡14块样方的调查资料为基础,分析了泰山植物物种多样性沿海拔梯度的分布格局。结果表明:在相同海拔范围内,南坡物种丰富度大于北坡,泰山物种丰富度随海拔的升高而减少。整个群落及不同层次的物种多样性沿海拔梯度在泰山南北坡呈现不同的分布格局。在人为干扰程度低的情况下,北坡的群落物种丰富度在各个层次均较高,而多样性指数在各个层次不一样,北坡乔木层的多样性指数较南坡低,但灌木层和草本层则是北坡明显大于南坡。整体上,物种多样性指数与海拔的相关性,北坡要比南坡好。  相似文献   

14.
In the Indian subcontinent there is hardly any study that compares the bird community structure of urban/suburban areas with those of forest habitat. The present survey identified diverse assemblages of birds in the Pauri district at different elevations. A total of 125 bird species belonging to 40 families including two least count species (Lophura leucomelanos and Pucrasia marcolopha) were recorded during this survey in the forest and urbanized habitats of Pauri District (Garhwal Hiamalaya) of Uttarakhand state, India. The high elevation (Pauri 1600–2100 m a.s.l.), mid elevation (Srikot-Khanda 900–1300 m a.s.l.) and low elevation (Srinagar 500–900 m a.s.l.) contributed 88.8%, 63.2% and 58.4% of the total species respectively. Rarefaction analysis and Shannon diversity index showed that the high elevation forest habitat had highest bird species richness (BSR) and bird species diversity (BSD) followed by the mid and then the low elevation forests. BSR and BSD fluctuated across seasons at all elevations but not across habitat types. Present study provides a base line data about avian community composition in urbanized and natural habitats along altitudinal gradient in the study area. This information may be useful to the conservation biologists for the better management and conservation of the avifauna in the Western Himalaya, a part of one of the hot biodiversity spots of the world.  相似文献   

15.
Understanding how plant communities respond to plant invasions is important both for understanding community structure and for predicting future ecosystem change. In a system undergoing intense plant invasion for 25 years, we investigated patterns of community change at a regional scale. Specifically, we sought to quantify how tussock grassland plant community structure had changed and whether changes were related to increases in plant invasion. Frequency data for all vascular plants were recorded on 124, permanent transects in tussock grasslands across the lower eastern South Island of New Zealand measured three times over a period of 25 years. Multivariate analyses of species richness were used to describe spatial and temporal patterns in the vegetation. Linear mixed‐effects models were used to relate temporal changes in community structure to the level and rate of invasion of three dominant invasive species in the genus Hieracium while accounting for relationships with other biotic and abiotic variables. There was a strong compositional gradient from exotic‐ to native‐dominated plant communities that correlated with increasing elevation. Over the 25 years, small‐scale species richness significantly decreased and then increased again; however, these changes differed in different plant communities. Exotic species frequency consistently increased on some transects and consistently declined on others. Species richness changes were correlated with the level of Hieracium invasion and abiotic factors, although the relationship with Hieracium changed from negative to positive over time. Compositional changes were not related to measured predictors. Our results suggest that observed broad‐scale fluctuations in species richness and community composition dynamics were not driven by Hieracium invasion. Given the relatively minor changes in community composition over time, we conclude that there is no evidence for widespread degradation of these grasslands over the last 25 years. However, because of continuing weed invasion, particularly at lower elevations, impacts may emerge in the longer term.  相似文献   

16.
Multispecies agro‐forestry is generally lauded for providing ecosystem services, especially in tropical environments. Avian communities contribute to services such as biodiversity and pest management. Characterizing and evaluating avian community composition in similar cropping systems will help optimize management for ecosystem services. We examined the relationship between cropping system vegetation and avian communities in four shaded agro‐forestry systems common to the Limón province of Costa Rica: abandoned and managed systems of cacao, cacao with banana, and banana. During two field seasons, we detected 2605 birds from 106 species and identified 2791 trees and shrubs from 62 morphospecies. We compared vegetation and avian species richness across systems with mixed‐effects linear models. Canopy, understory, and groundcover vegetation differed among agro‐forestry systems. More ground‐ and understory‐foraging forest species were detected in agro‐forestry systems lacking banana, whereas richness of agricultural generalist species was highest in systems with banana. Richness of understory‐ and ground‐foraging species correlated with understory tree species richness and leaf litter. Our results indicate that shaded cacao and banana systems can have similar canopy‐foraging species richness that includes both agricultural and woodland generalist species, but that interspersing banana with cacao can adversely influence understory forest bird community composition. Agro‐forests with diverse understory vegetation support more understory‐foraging bird species that have proven valuable in pest management. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

17.
In Australia, the role of noisy miners Manorina melanocephala in biotic homogenization of the avifauna has been well established in modified landscapes, and is listed as a threatening process under national conservation legislation. However, less is known about the effect of the congeneric and more widely distributed yellow‐throated miner, M. flavigula. In this paper we investigate the relative roles of habitat loss and increased dominance by the yellow‐throated miner in avian homogenization and species functional group decline. We examined bird community data collected from 368 woodland sites across three bioregions. For each site there was a local and a landscape scale measure of remnant vegetation cover. We used both multivariate and regression analysis to test the relative influence of yellow‐throated miner abundance and vegetation on bird community composition. There was clear compositional change and homogenization of the avifauna where yellow‐throated miners were present and vegetation cover was low. The abundance of 40 bird species was predicted by combinations of vegetation cover or yellow‐throated miner abundance, and 31 of these regressions included the term yellow‐throated miner. Of these, there was a negative relationship with 23 species, and 19 of these were insectivores or nectarivores. We postulate that the combination of clearing and yellow‐throated miner abundance can interact to disrupt the ecological function of woodlands, by the depletion of insect‐ and nectar‐feeding species and the disturbance to mixed feeding flocks. We propose future research objectives that include a continental‐scale analysis of the determinants of yellow‐throated miner overabundance, the numerical and geographical thresholds of their potential impacts, and the ecological consequences on both avifauna and the woodlands they inhabit.  相似文献   

18.
The spatial distributions of species, and the resulting composition of local communities, are shaped by a complex interplay between species’ climatic and habitat preferences. We investigated this interaction by analyzing how the climatic niches of bird species within given communities (measured as a community thermal index, CTI) are related to vegetation structure. Using 3129 bird communities from the French Breeding Bird Survey and an information theoretic multimodel inference framework, we assessed patterns of CTI variation along landscape scale gradients of forest cover and configuration. We then tested whether the CTI varies along local scale gradients of forest structure and composition using a detailed data set of 659 communities from six forests located in northwestern France. At landscape scale, CTI values decreased with increasing forest cover, indicating that bird communities were increasingly dominated by cold‐dwelling species. This tendency was strongest at low latitudes and in landscapes dominated by unfragmented forest. At local scale, CTI values were higher in mature deciduous stands than in conifer or early stage deciduous stands, and they decreased consistently with distance from the edge of forest. These trends underpin the assertion that species’ habitat use along forest gradients is linked with their climatic niche, although it remains unclear to what extent it is a direct consequence of microclimatic variation among habitats, or a reflection of macroscale correlations between species’ thermal preferences and their habitat choice. Moreover, our results highlight the need to address issues of scale in determining how habitat and climate interact to drive the spatial distribution of species. This will be a crucial step towards accurate predictions of changes in the composition and dynamics of bird communities under global warming.  相似文献   

19.
Aim To test whether bird assemblages are shifting upwards in their elevational distribution in synchrony with current climate warming and/or habitat changes. Location A gradient of elevation in the Italian Alps (Alta Valsessera, Piedmont). Methods We used data from two recent atlas surveys performed on a 1 × 1 km grid at an 11‐year interval (1992–94 and 2003–05). We modelled the elevational gradient of avifaunal composition, using a sample‐based approach, in an effort to detect evidence for an upward elevational shift of bird zonation. Changes in species richness were controlled for. The results from this analysis were compared with those obtained using a species‐based approach. Changes in climate and landscape between the two surveys were assessed using local meteorological data and Corine Land Cover maps, respectively. Results We detected small avifaunal changes between the two surveys: (1) mean elevations increased for the majority of species, but the average change was not significantly different from zero; (2) the species richness increased, but this was mainly due to an increase in sampling effort; and (3) a change in species composition was detected, which was at the limit of significance and corresponded on average to a 29‐m upward elevational shift in the distribution of the avifauna. The shift was the same for open land and forest bird communities. During the same period, the mean temperature increased by c. 1 °C in the area, and a slight trend towards vegetation closure by woody plants was detected. Main conclusions The use of fine‐scale breeding bird atlases in mountainous regions, together with ordination methods, provides a sensitive tool to test and measure elevational shifts in species ranges, but the results have to be interpreted carefully. In our case, the observed elevational shift in the distributions of the avifauna cannot unambiguously be attributed to climate warming. This shift is smaller than expected from the regional increase in temperature, which raises the question of how closely bird distributions match climate change.  相似文献   

20.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号