首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria‐induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co‐immunoprecipitation, we identified a CLASP1/CD2AP/EB1‐containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14‐3‐3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta‐p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain‐interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1‐binding SxIP motif, as well as functional SH3 domain‐binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non‐infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.  相似文献   

2.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide‐bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin‐like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig‐like domain of the human T cell co‐receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein‐protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino‐acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1‐p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1‐p53(FG)‐loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1‐p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.  相似文献   

4.
5.
Alpha‐gliadin peptide 31–43 is considered to be the main peptide responsible for the innate immune response in celiac disease patients. Recent evidence indicates that peptide 31–43 rapidly enters cells and interacts with the early endocytic vesicular compartment. However, the mechanism of its uptake is not completely understood. Our aim is to characterize, isolate and identify possible cell surface proteins involved in peptide 31–43 internalization by Caco‐2 cells. In this study, we used a chemical cross‐linker to block peptide 31–43 on cell surface proteins, and pulled‐down peptide‐proteins complexes using antibodies raised against peptide 31–43. Through this experimental approach, we did not observe any specific complex between cell proteins and peptide 31–43 in Coomassie‐stained denaturating gels or by Western blotting. We also found that type 2 transglutaminase was not necessary for peptide 31–43 internalization, even though it had a regulatory role in the process. Finally, we demonstrated that peptide 31–43 did not behave as a classical ligand, indeed the labeled peptide did not displace the unlabeled peptide in a competitive binding assay. On the basis of these findings and of previous evidence demonstrating that peptide 31–43 is able to interact with a membrane‐like environment in vitro, we conclude that membrane composition and organization, rather than a specific receptor protein, may have a major role in peptide 31–43 internalization by cells.  相似文献   

6.
Every protein fated to receive the glycophosphatidylinositol (GPI) anchor post‐translational modification has a C‐terminal GPI‐anchor attachment signal sequence. This signal peptide varies with respect to length, content, and hydrophobicity. With the exception of predictions based on an upstream amino acid triplet termed ω→ω + 2 which designates the site of GPI uptake, there is no information on how the efficiencies of different native signal sequences compare in the transamidation reaction that catalyzes the substitution of the GPI anchor for the C‐terminal peptide. In this study we utilized the placental alkaline phosphatase (PLAP) minigene, miniPLAP, and replaced its native 3′ end‐sequence encoding ω‐2 to the C‐terminus with the corresponding C‐terminal sequences of nine other human GPI‐anchored proteins. The resulting chimeras then were fed into an in vitro processing microsomal system where the cleavages leading to mature product from the nascent preproprotein could be followed by resolution on an SDS–PAGE system after immunoprecipitation. The results showed that the native signal of each protein differed markedly with respect to transamidation efficiency, with the signals of three proteins out‐performing the others in GPI‐anchor addition and those of two proteins being poorer substrates for the GPI transamidase. The data additionally indicated that the hierarchical order of efficiency of transamidation did not depend solely on the combination of permissible residues at ω→ω + 2. J. Cell. Biochem. 84: 68–83, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

7.
8.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Stable peptides have been explored as epitope mimics for protein–protein and protein–nucleic acid interactions; however, presentation of a regular structure is critical. Aromatic interactions are ubiquitous and are competent at stabilizing a β‐hairpin fold. The greatest stabilization has been reported from pairs of tryptophan side chains. Naphthylalanine residues are often used as tryptophan replacements, but it is not clear if 1‐naphthylalanine or 2‐naphthylalanine is adequate at replicating the geometry and stability observed with tryptophan aromatic interactions. Herein, a 12‐residue peptide has been constructed with laterally disposed aromatic amino acids. A direct comparison is made between tryptophan and other bicyclic, unnatural amino acids. Significant stabilization is gained from all bicyclic amino acids; however, geometric analysis shows that only 1‐naphthylalanine adopts a similar edge to face geometry as tryptophan, whereas the 2‐naphthylalanine appears most similar to a substituted phenylalanine. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Cysteine‐rich secretory proteins (CRISPs) are mainly found in the mammalian male reproductive tract and reported to be involved at different stages of fertilization. CRISPs have been shown to interact with prostate secretory protein of 94 amino acids (PSP94) from diverse sources, and the binding of these evolutionarily conserved proteins across species is proposed to be of functional significance. Of the three mammalian CRISPs, PSP94–CRISP3 interaction is well characterized, and specific binding sites have been identified; whereas, CRISP2 has been shown to interact with PSP94 in vitro. Interestingly, human CRISP3 and CRISP2 proteins are closely related showing 71.4% identity. In this study, we identified CRISP2 as a potential binding protein of PSP94 from human sperm. Further, we generated antisera capable of specifically detecting CRISP2 and not CRISP3. In this direction, specific peptides corresponding to the least conserved ion channel regulatory region were synthesized, and polyclonal antibodies were generated against the peptide in rabbits. The binding characteristics of the anti‐CRISP2 peptide antibody were evaluated using competitive ELISA. Immunoblotting experiments also confirmed that the peptide was able to generate antibodies capable of detecting the mature CRISP2 protein present in human sperm lysate. Furthermore, this anti‐CRISP2 peptide antibody also detected the presence of native CRISP2 on sperm.Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The soybean gene GmFWL1 (FW2‐2‐like1) belongs to a plant‐specific family that includes the tomato FW2‐2 and the maize CNR1 genes, two regulators of plant development. In soybean, GmFWL1 is specifically expressed in root hair cells in response to rhizobia and in nodules. Silencing of GmFWL1 expression significantly reduced nodule numbers supporting its role during soybean nodulation. While the biological role of GmFWL1 has been described, its molecular function and, more generally, the molecular function of plant FW2‐2‐like proteins is unknown. In this study, we characterized the role of GmFWL1 as a membrane microdomain‐associated protein. Specifically, using biochemical, molecular and cellular methods, our data show that GmFWL1 interacts with various proteins associated with membrane microdomains such as remorin, prohibitins and flotillins. Additionally, comparative genomics revealed that GmFWL1 interacts with GmFLOT2/4 (FLOTILLIN2/4), the soybean ortholog to Medicago truncatula FLOTILLIN4, a major regulator of the M. truncatula nodulation process. We also observed that, similarly to MtFLOT4 and GmFLOT2/4, GmFWL1 was localized at the tip of the soybean root hair cells in response to rhizobial inoculation supporting the early function of GmFWL1 in the rhizobium infection process.  相似文献   

12.
Long noncoding RNAs (lncRNAs) have been proven to exert important functions in the various biological processes of human cancers. It has been reported that lncRNA HNF1 homeobox A antisense RNA 1 (HNF1A‐AS1) was abnormally expressed and played a role in the initiation and development of various human cancers. In this study, we confirmed that the expression level of HNF1A‐AS1 was increased in glioma tissues and cells. Knockdown of HNF1A‐AS1 inhibited cell proliferation and promoted cell apoptosis in glioma. Then, we disclosed the downregulation of miR‐363‐3p in glioma tissues and cell lines. The interaction between HNF1A‐AS1 and miR‐363‐3p was identified in glioma cells. Furthermore, an inverse correlation between HNF1A‐AS1 and miR‐363‐3p was observed in glioma tissues. Afterwards, we recognized that MAP2K4 was a direct target of miR‐363‐3p. The expression of MAP2K4 was negatively correlated with miR‐363‐3p while positively related to HNF1A‐AS1 in glioma tissues. We also found the regulatory effect of HNF1A‐AS1 on the MAP2K4‐dependent JNK signaling pathway. All findings indicated that HNF1A‐AS1 induces the upregulation of MAP2K4 to activate the JNK signaling pathway to promote glioma cell growth by acting as a miR‐363‐3p sponge.  相似文献   

13.
14.
The interactions of cobalt(II)–4‐[(5‐chloro‐2‐pyridyl)azo]‐1,3‐diaminobenzene (5‐Cl‐PADAB) complex with different kinds of homopolymer oligonucleotides in basic medium were investigated based on the measurements of resonance light scattering, UV–vis, circular dichroism spectra and dark field light‐scattering imaging. Experiments showed that only thymidine homopolymer (poly T) oligonucleotides with the length in the range of poly T6 to poly T18 could interact with the Co(II)–5‐Cl‐PADAB complex in alkaline conditions and cause evident color and spectral change. Thus, the binary complex of Co(II)–5‐Cl‐PADAB could be employed as a visual probe for selectively recognizing the poly T oligonucleotides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Peptide models built from cis‐ and trans‐2‐aminocyclobutane‐1‐carboxylic acids (ACBCs) are studied in the solid phase by combining Fourier‐transform infrared spectroscopy (FTIR) absorption spectroscopy, vibrational circular dichroism (VCD), and quantum chemical calculations using density functional theory (DFT). The studied systems are N‐tert‐butyloxycarbonyl (Boc) derivatives of 2‐aminocyclobutanecarboxylic acid (ACBC) benzylamides, namely Boc?(cis‐ACBC)?NH?Bn and Boc?(trans‐ACBC)?NH?Bn. These two diastereomers show very different VCD signatures and intensities, which of the trans‐ACBC derivative being one order of magnitude larger in the region of the ν (CO) stretch. The spectral signature of the cis‐ACBC derivative is satisfactorily reproduced by that of the monomer extracted from the solid‐state geometry of related ACBC derivatives, which shows that no long‐range effects are implicated for this system. In terms of hydrogen bonds, the geometry of this monomer is intermediate between the C6 and C8 structures (exhibiting a 6‐ or 8‐membered cyclic NH?O hydrogen bond) previously evidenced in the gas phase. The benzyl group must be in an extended geometry to reproduce satisfactorily the shape of the VCD spectrum in the ν (CO) range, which qualifies VCD as a potential probe of dispersion interaction. In contrast, reproducing the IR and VCD spectrum of the trans‐ACBC derivative requires clusters larger than four units, exhibiting strong intermolecular H‐bonding patterns. A qualitative agreement is obtained for a tetramer, although the intensity enhancement is not reproduced. These results underline the sensitivity of VCD to the long‐range organisation in the crystal.  相似文献   

16.
17.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The β‐subunit of the human chorionic gonadotropin (hCG) hormone, which is believed to be related to certain types of cancer, contains three hairpin‐like fragments. To investigate the role of β‐hairpin formation in the early stages of the hCGβ folding, a 28‐residue peptide with the sequence RDVRFESIRLPGSPRGVNPVVSYAVALS, corresponding to the H3‐β hairpin fragment (residues 60–87) of the hCGβ subunit, was studied under various conditions using three optical spectroscopic methods: Fourier transform ir spectroscopy, electronic CD, and vibrational CD. Environmental conditions are critical factors for formation of secondary structure in this peptide. TFE : H2O mixed solvents induced helical formation. Formation of β‐structure in this peptide, which may be related to the native β‐hairpin formation in the intact hormone, was found to be induced only under conditions such as high concentration, high temperature, and the presence of nonmicellar sodium dodecyl sulfate concentrations. These findings support a protein folding mechanism for the hCGβ subunit in which an initial hydrophobic collapse, which increases intermolecular interactions in hCGβ, is needed to induce the H3‐β hairpin formation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 413–423, 1999  相似文献   

19.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

20.
We describe herein the synthesis of (rac)‐ or enantiopure (S)‐(?)‐(2‐MeBu)N(Pr)2MeI ammonium salts. These racemic and enantiopure ammonium salts were used as cationic templates to obtain new two‐dimensional (2D) ferromagnets [(rac)‐(2‐MeBu)N(Pr)2Me][MnCr(C2O4)3] and [(S)‐(?)‐(2‐MeBu)N(Pr)2Me][ΔMnΛ nCr(C2O4)3]. The absolute configuration of the hexacoordinated Cr(III) metallic ion in the enantiopure 2D network was determined by a circular dichroism measurement. The structure of [(2‐MeBu)N(Pr)2Me][MnCr(C2O4)3], established by single crystal X‐ray diffraction, belongs to the chiral P63 space group. According to direct current (dc) magnetic measurements, these compounds are ferrromagnets with a temperature Tc = 6°K. Chirality 25:444–448, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号