首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corticotropin‐releasing hormone, which is the predominant regulator of neuroendocrine responses to stress, attenuates inflammation through stimulation of glucocorticoid release. Enhanced corticotropin‐releasing hormone expression has been detected in inflammatory cells of the vascular endothelium, where it acts as a local regulator of endothelial redox homeostasis. Estrogens have beneficial effects on endothelial integrity and function, though the mechanism underlying their antioxidative effect remains as yet largely unknown. We therefore investigated the effect of 17β‐estradiol on pro‐oxidant action of corticotropin‐releasing hormone in vitro in macroendothelial cells, and, more specifically, the role of 17β‐estradiol on corticotropin‐releasing hormone‐induced activities/release of the antioxidant enzymes namely, endothelial nitric oxide synthase, superoxide dismutase, catalase, and glutathione. We observed that 17β‐estradiol abolished the stimulatory effect of corticotropin‐releasing hormone on intracellular reactive oxygen species levels and counteracted its inhibitory effect on endothelial nitric oxide synthase activity and nitric oxide release. In addition, 17β‐estradiol significantly induced superoxide dismutase and catalase activity, an effect that was not significantly influenced by corticotropin‐releasing hormone. Finally, 17β‐estradiol significantly increased glutathione levels and the glutathione/glutathione + glutathione disulfide ratio, an action that was partially blocked by corticotropin‐releasing hormone. Our results reveal that 17β‐estradiol counterbalances corticotropin‐releasing hormone‐mediated pro‐inflammatory action and thereby maintains the physiological threshold of the endothelial cell redox environment. These observations may be of importance, considering the protective role of estrogen in the development of atherosclerosis.  相似文献   

2.
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.  相似文献   

3.
4.
《Gender Medicine》2012,9(4):287-291
Numerous studies have shown that female human beings exhibit lower blood pressure levels over much of their life span compared with their age-matched counterparts. This sexual dimorphism is apparent in human beings as well as most, if not all, mammals. However, after the onset of menopause blood pressure levels in women increase and become similar to those in men, suggesting an important role of sex hormones in the regulation of blood pressure. The lower blood pressure levels in premenopausal women are associated with a lower risk of development and progression of cardiovascular disease and hypertension compared with age-matched men. This clear female advantage with respect to lower incidence of cardiovascular disease no longer exists after menopause, again highlighting the importance of sex hormones in the pathophysiology of cardiovascular disease in both men and women. In fact, both estrogens and androgens have been implicated in the development of cardiovascular disease and hypertension, with estrogens, in general, being protective and androgens being detrimental. Although the exact mechanisms by which sex hormones contribute to the regulation of cardiovascular function and blood pressure are still being investigated, there is increasing evidence that modulating the activity of locally active hormonal systems is one of the major mechanisms of sex hormone actions in target organs, including the vasculature and kidneys. Indeed, several studies have demonstrated the importance of the interaction between sex hormones and the renin–angiotensin system in regulating cardiovascular function and blood pressure. Furthermore, the differential effects of estrogens and androgens on the expression and activity of the components of the renin–angiotensin system could possibly explain the sex differences in blood pressure levels and the development and progression of cardiovascular disease and hypertension.  相似文献   

5.
6.
OBJECTIVE--To provide information on endometrial stimulation after discontinuation of treatment with oestradiol implants. DESIGN--Long term follow up of withdrawal bleeding patterns in women taking progestogens cyclically every month after oestradiol implant treatment was ended. SETTING--Specialist menopause clinic. SUBJECTS--10 Postmenopausal patients (at least 12 months'' amenorrhoea after the last spontaneous period) who were treated with oestradiol implants for typical symptoms of oestrogen deficiency. The oestradiol dose was 50 mg, reimplantation occurring roughly every six months. Patients subsequently either needed to discontinue the hormone treatment for medical reasons or expressed a desire to stop treatment. MAIN OUTCOME MEASURE--Duration of endometrial stimulation--defined as the presence of withdrawal bleeding in response to progestogen given cyclically--after insertion of the last oestradiol implant. RESULTS--Four patients eventually stopped bleeding, their mean duration of bleeding being 35 months (range 27-43 months). One patient required hysterectomy 26 months after the last implantation because of persistent irregular bleeding despite treatment with high doses of progestogen. Three patients bled for 22, 30, and 36 months and then restarted oestrogen treatment because symptoms returned. The last two patients subsequently continued to bleed 12 and 21 months after the last implantation. CONCLUSIONS--The duration of endometrial stimulation after implantation can be prolonged, up to 43 months. Insertion of oestradiol implants can carry a long term commitment to the cyclical administration of progestogen and regular withdrawal bleeding if endometrial hyperplasia and carcinoma are to be avoided.  相似文献   

7.
ObjectPatients with familial intracranial aneurysms (IA) have a higher risk of rupture than patients with sporadic IA. We compared geometric and morphological risk factors for aneurysmal rupture between patients with familial and sporadic aneurysmal subarachnoid hemorrhage (aSAH) to analyse if these risk factors contribute to the increased rupture rate of familial IA.MethodsGeometric and morphological aneurysm characteristics were studied on CT-angiography in a prospectively collected series of patients with familial and sporadic aSAH, admitted between September 2006 and September 2009, and additional patients with familial aSAH retrieved from the prospectively collected database of familial IA patients of our center. Odds ratios (OR) with corresponding 95% confidence intervals (95% CI) were calculated to compare the aneurysm characteristics between patients with familial and sporadic aSAH.ResultsWe studied 67 patients with familial and 184 with sporadic aSAH. OR’s for familial compared with sporadic aSAH were for oval shape 1.16(95%CI:0.65–2.09), oblong shape 0.26(95%CI:0.03–2.13), irregular shape 0.83(95%CI:0.47–1.49), aspect ratio ≥ 1.6 0.94(95%CI:0.54–1.66), contact with the perianeurysmal environment (PAE) 1.15(95%CI:0.56–2.40), deformation by the PAE 1.05(95%CI:0.47–2.35) and for dominance of the posterior communicating artery (PCoA) in case of PCoA aneurysms 1.97(95% CI:0.50–7.83).ConclusionsThe geometric and morphological risk factors for aneurysm rupture do not have a higher prevalence in familial than in sporadic aSAH and thus do not explain the increased risk of IA rupture in patients with familial IA. We recommend further search for other potential risk factors for rupture of familial IA, such as genetic factors.  相似文献   

8.
The alleviative effects of two antioxidants, carnosine (Car) and melatonin (Mel), against titanium dioxide nanoparticles (TiO2‐NPs) toxicity‐induced oxidative and inflammatory renal damage were examined in rats. Administration of these antioxidants along with TiO2‐NPs effectively reduced serum urea, uric acid, creatinine, glucose, tumor necrosis factor‐α, interleukin‐6, C‐reactive protein, immunoglobulin G, vascular endothelial growth factor, and nitric oxide, as well as a significant amelioration of the decrease in glutathione levels in renal tissue was observed, compared to those in rats treated with TiO2‐NPs alone. The renoprotective properties of the antioxidants were confirmed by reduced intensity of renal damage as demonstrated by histological findings. In conclusion, Car and Mel play protective roles against TiO2‐NPs‐induced renal inflammation and oxidative injury, likely due to their antioxidant and anti‐inflammatory properties.  相似文献   

9.
The endocrinological changes of the climacteric have been defined by studying the concentrations of follicle-stimulating hormone (FSH), luteinising hormone (LH), androstenedione, testosterone, oestrone, and oestradiol in 60 normal postmenopausal women of different menopausal ages. The women were studied in six groups, according to the number of years since their menopause. One year after the menopause androstenedione, oestrone, and oestradiol concentrations were reduced to about 20% of the values recorded during the early proliferative phase of the menstrual cycle. At the same time the mean concentration of FSH had risen by a factor of 13-4 and that of LH by a factor of 3-0. Concentrations of both gonadotrophins reached a peak of 18-4 and 3-4 times the proliferative phase value respectively after two to three years, and then gradually declined in the next three decades to values that were 40-50% of these maximal levels. Testosterone concentrations remained mostly in the normal range for premenopausal women but were depressed to 60% of these levels two to five years after the menopause, and the mean androstenedione levels showed a significant increase in the same group of women. The concentrations of both oestrone and oestradiol remained consistently low for 10 years after the menopause, but oestradiol concentrations inexplicably increased in the last two decades, with levels at the lower end of normal range for reproductive women in six patients.  相似文献   

10.
The purpose of our study was to evaluate the protective effect of melatonin in a rat model of caerulein‐induced acute pancreatitis. For the induction of experimental acute pancreatitis, four subcutaneous injections of caerulein (20 µg kg–1 body weight) were given to Wistar rats at 2‐h intervals. Melatonin was injected intraperitoneally (25 mg kg–1 body weight) 30 min before each caerulein injection. After 12 h, rats were sacrificed by decapitation. Blood and pancreas samples were collected and processed for serological and histopathological studies, respectively. Lipase, α‐amylase, corticosterone, total antioxidant power and cytokines interleukin (IL)‐1β, IL‐4 and tumour necrosis factor (TNF)‐α were determined using commercial kits. ANOVA and Tukey tests (P < 0.05) were performed for the statistical analysis of the results. Results showed that the administration of melatonin reduced histological damage induced by caerulein treatment as well as the hyperamylasemia and hyperlipidemia. Corticosterone and antioxidant total power were also reverted to basal activities. Furthermore, melatonin pre‐treatment reduced pro‐inflammatory cytokines IL‐1β and TNF‐α and increased the serum levels of anti‐inflammatory cytokine IL‐4. In conclusion, the findings suggest that the protective effect of melatonin in caerulein‐induced acute pancreatitis is mediated by the anti‐inflammatory ability of this indolamine. Thus, melatonin may have a protective effect against acute pancreatitis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Ellagic acid (EA) renoprotective effect against cisplatin (CIS)‐induced nephrotoxicity remains elusive. Therefore, male Sprague–Dawley rats received CIS alone or EA (10 and 30 mg/kg, p.o.) for 5 days before and after CIS injection. CIS increased serum levels of blood urea nitrogen, creatinine, γ‐glutamyl transferase, and reduced those of albumin and total protein. It also raised serum endothelin‐1, as well as serum and renal nitric oxide, tumor necrosis factor‐α, and monocyte chemoattractant protein‐1. CIS enhanced the renal caspase‐3, hemeoxygenase (HO)‐1, nuclear factor‐κB, and inducible nitric oxide. EA hampered CIS‐induced nephrotoxicity manifested by an enhancement of the glomerular filtration rate which was associated by the reduction of inflammatory mediators and the apoptotic marker in the serum and/or kidney. The present study discloses that EA suppresses HO‐1 and, its renoprotection is also linked to its anti‐inflammatory and antiapoptotic properties, as well as the reduction of nitric oxide and endothelin‐1.  相似文献   

13.
We previously identified the marked upregulation of integrin β4 in human lung endothelial cells (EC) treated with simvastatin, an HMG coA‐reductase inhibitor with vascular‐protective and anti‐inflammatory properties in murine models of acute lung injury (ALI). We now investigate the role of integrin β4 as a novel mediator of vascular inflammatory responses with a focus on mitogen‐activated protein kinases (MAPK) signaling and the downstream expression of the inflammatory cytokines (IL‐6 and IL‐8) essential for the full elaboration of inflammatory lung injury. Silencing of integrin β4 (siITGB4) in human lung EC resulted in significant increases in both basal and LPS‐induced phosphorylation of ERK 1/2, JNK, and p38 MAPK, consistent with robust integrin β4 regulation of MAPK activation. In addition, siITB4 increased both basal and LPS‐induced expression of IL‐6 and IL‐8 mRNA and protein secretion into the media. We next observed that integrin β4 silencing increased basal and LPS‐induced phosphorylation of SHP‐2, a protein tyrosine phosphatase known to modulate MAPK signaling. In contrast, inhibition of SHP‐2 enzymatic activity (sodium stibogluconate) abrogated the increased ERK phosphorylation associated with integrin β4 silencing in LPS‐treated EC and attenuated the increases in levels of IL‐6 and IL‐8 in integrin‐β4‐silenced EC. These findings highlight a novel negative regulatory role for integrin β4 in EC inflammatory responses involving SHP‐2‐mediated MAPK signaling. Upregulation of integrin β4 may represent an important element of the anti‐inflammatory and vascular‐protective properties of statins and provides a novel strategy to limit inflammatory vascular syndromes. J. Cell. Biochem. 110: 718–724, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The sensitivity of the developing central nervous system (CNS) to the deleterious effects of ethanol has been well documented, with exposure leading to a wide array of CNS abnormalities. Certain CNS regions are susceptible to ethanol during well‐defined critical periods. In the neonatal rodent cerebellum, a profound loss of Purkinje cells is found when ethanol is administered early in the postnatal period [on postnatal days 4 or 5 (P4–5)], while this neuronal population is much less vulnerable to similar ethanol insult slightly later in the postnatal period (P7–9). Prior studies have shown that neurotrophic factors (NTFs) can be altered by ethanol exposure, and both in vitro and in vivo studies have provided evidence that such substances have the potential to protect against ethanol neurotoxicity. In the present study, it was hypothesized that depletion of an NTF shown to be important to cerebellar development would exacerbate ethanol‐related effects within this region, when administration was confined to a normally ethanol‐resistant ontogenetic period. For this study, brain‐derived neurotrophic factor (BDNF) gene‐deleted (“knockout”) and wild‐type mice were exposed to ethanol via vapor inhalation or to control conditions during the normally ethanol‐resistant period (P7 and P8). Two hours after termination of exposure on P8, analyses were made of body weight, crown‐rump length, and brain weight. In subsequent investigations, the number and density of Purkinje cells and the volume of cerebellar lobule I were determined, and the expression of anti‐ and pro‐apoptotic proteins and the activities of endogenous antioxidants were assessed. It was found that the BDNF knockouts were significantly smaller than the wild‐type animals, with smaller brain weights. Purkinje cell number and density was reduced in ethanol‐treated knockout, but not wild‐type animals, and the volume of lobule I was significantly decreased in the gene‐deleted animals compared to wild‐types, but was not further affected by ethanol treatment. The loss of Purkinje cells in the BDNF knockouts was accompanied by decreases in anti‐apoptotic Bcl‐xl and in phosphorylated (and hence inactivated) pro‐apoptotic Bad, and reduced activity of the antioxidant glutathione reductase, while the antioxidant catalase was increased by ethanol treatment in this genotype. In the wild‐type animals, anti‐apoptotic Bcl‐2 was decreased by ethanol treatment, but the pro‐apoptotic c‐Jun N‐terminal kinase (JNK) was markedly diminished by ethanol exposure, while the activity of the protective antioxidant superoxide dismutase (SOD) was significantly enhanced. These results suggest that neurotrophic factors have the capacity to protect against ethanol neurotoxicity, perhaps by regulation of expression of molecules critical to neuronal survival such as elements of the apoptosis cascade and protective antioxidants. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 160–176, 2002  相似文献   

15.
Systemic lupus erythematosus (SLE) is an autoimmune disease, which results in various organ pathologies. However, current treatment towards SLE is suboptimal. Erythropoietin (EPO) has been shown to promote SLE recovery, but clinical application can be limited by its haematopoiesis‐stimulating effects. EPO‐derived helix‐B peptide (ARA290) is non‐erythrogenic but has been reported to retain the anti‐inflammatory and tissue‐protective functions of EPO. Therefore, here we investigated the effects and potential mechanisms of ARA290 on SLE. The administration of ARA290 to pristane‐induced SLE and MRL/lpr mice significantly suppressed the level of serum antinuclear autoantibodies (ANAs) and anti‐dsDNA autoantibodies, reduced the deposition of IgG and C3, and ameliorated the nephritis symptoms. Moreover, the serum concentrations of inflammatory cytokine IL‐6, MCP‐1 and TNF‐α in SLE mice were reduced by ARA290. Further, ARA290 decreased the number of apoptotic cells in kidney. In vitro experiment revealed that ARA290 inhibited the inflammatory activation of macrophages and promoted the phagocytotic function of macrophages to apoptotic cells. Finally, ARA290 did not induce haematopoiesis during treatment. In conclusion, ARA290 ameliorated SLE, which at least could be partly due to its anti‐inflammatory and apoptotic cell clearance promoting effects, without stimulating haematopoiesis, suggesting that ARA290 could be a hopeful candidate for SLE treatment.  相似文献   

16.
Atherosclerosis is a chronic immuno‐inflammatory disease associated with blood lipids disorder. Many studies have demonstrated that caloric restriction (CR) can prevent atherosclerosis and extend lifespan. Sir2 protein, mammal's SIRT1, has been reported to at least partly contribute to the protective effect of CR. Hence, we hypothesize that SIRT1 is a key regulator in the pathogenesis of atherosclerosis and that upregulation of SIRT1 in endothelial cells may mimic CR's beneficial effect on vascular health. The recent studies have demonstrated that endothelial SIRT1 is an anti‐atherosclerosis factor and the possible mechanism may be related to inhibit oxidized low‐density lipoprotein (oxLDL)‐induced apoptosis, upregulate endothelial nitric oxide synthase (eNOS) expression, and improve endothelium relaxation function. We infer that SIRT1 may be a novel target for atherosclerosis prevention and treatment. J. Cell. Biochem. 108: 10–13, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Recent clinical studies such as HOPE, SECURE, and APRES show that angiotensin-converting enzyme (ACE) inhibitors like ramipril improve the prognosis of patients with a high risk of atherothrombotic cardiovascular events. Atherosclerosis, as a chronic inflammatory condition of the vascular system, can turn into an acute clinical event through the rupture of a vulnerable atherosclerotic plaque followed by thrombosis. ACE inhibition has a beneficial effect on the atherogenic setting and on fibrinolysis. Endothelial dysfunction is the end of a common process in which cardiovascular risk factors contribute to inflammation and atherogenesis. By inhibiting the formation of angiotensin II, ACE inhibitors prevent any damaging effects on endothelial function, vascular smooth muscle cells, and inflammatory vascular processes. An increase in the release of NO under ACE inhibition has a protective effect. Local renin-angiotensin systems in the tissue are involved in the inflammatory processes in the atherosclerotic plaque. Circulating ACE-containing monocytes, which adhere to endothelial cell lesions, differentiate within the vascular wall to ACE-containing macrophages or foam cells with increased local synthesis of ACE and angiotensin II. Within the vascular wall, angiotensin II decisively contributes to the instability of the plaque by stimulating growth factors, adhesion molecules, chemotactic proteins, cytokines, oxidized LDL, and matrix metalloproteinases. Suppression of the increased ACE activity within the plaque can lead to the stabilization and deactivation of the plaque by reducing inflammation in the vascular wall, thus lessening the risk of rupture and thrombosis and the resultant acute clinical cardiovascular events. The remarkable improvement in the long-term prognosis of atherosclerotic patients with increased cardiovascular risk might be the clinical result of the contribution made by ACE inhibition in the vascular wall.  相似文献   

18.
Excessive exposure to Copper (Cu) may result in Cu toxicity and adversely affect health outcomes. We investigated the protective role of rutin on Cu‐induced brain damage. Experimental rats were treated as follows: group I: control; group II: Cu‐sulfate: 200 mg/kg; group III: Cu‐sulfate, and rutin 100 mg/kg; and group IV: rutin 100 mg/kg, for 7 weeks. Cu only treatment significantly decreased body weight gain, while rutin cotreatment reversed this decrease. Cu treatment increased malondialdehyde, nitric oxide level, and myeloperoxidase activity and decreased superoxide dismutase and catalase activities in rat brain. Immunohistochemistry showed that COX‐2, iNOS, and Bcl‐2 proteins were strongly expressed, while Bax was mildly expressed in the brain of Cu‐treated rats. Furthermore, brain histology revealed degenerated neurons, and perforated laminae of cerebral cortex in the Cu‐only treated rats. Interestingly, coadministration of Cu and rutin reduced the observed histological alteration, improved inflammatory and antioxidant biomarkers, thereby protecting against Cu‐induced brain damage via antioxidative and anti‐inflammatory mechanisms.  相似文献   

19.
Serum and saliva samples were obtained from 25 women in the last eight weeks of pregnancy. The concentrations of oestradiol and progesterone were measured by radioimmunoassay. The proportion of each hormone which was not bound to protein in serum was measured by centrifugal ultrafiltration: for progesterone the unbound fraction was 2.5% (2.13--2.78%) and for oestradiol 1.27% (1--1.83%). There was only a weak relationship between the free hormone concentrations estimated in blood and the levels measured in saliva. We conclude that, for the situation examined here, saliva does not provide a useful measure of unbound, biologically active steroid.  相似文献   

20.
Bovine lactoferricin (LfcinB) is a multi‐functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF‐2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin‐1β) IL‐1β and FGF‐2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL‐1β and FGF‐2 on the expression of cartilage‐degrading enzymes (MMP‐1, MMP‐3, and MMP‐13), destructive cytokines (IL‐1β and IL‐6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL‐4 and IL‐10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti‐inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL‐1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti‐catabolic and anti‐inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. J. Cell. Physiol. 228: 447–456, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号