首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Habitat transformation caused by naturalized legumes has been considered as a profound environmental threat worldwide. However, the weight of the impact on species diversity of local native and naturalized flora has yet to be revealed. In order to gain a better understanding of the phenomenon, we developed and tested the following hypotheses: (1) naturalized legumes promote local species diversity; (2) naturalized legumes increase local naturalized species diversity rather than native biodiversity; and (3) the impact of naturalized legumes varies with habitat type. Four counties in Northern Taiwan were selected to form the study site. Nine major habitat types were identified in 100 sampling sites (1 km2/each site) in northern Taiwan, and a total of 2,242 plots (1 m2/each plot) were sampled. Species, cover, and biodiversity indices of both native and naturalized floras were obtained, and soil samples were collected from plots with and without naturalized legumes analyzed. The biodiversity and cover of the whole and naturalized flora were increased significantly by naturalized legumes, while no effects on native flora were found. The significant increase in the species diversity and cover of the whole flora and naturalized flora disappeared when naturalized legumes were excluded from the data set; the same trend was observed when habitat type was considered. Soil nitrogen was marginally significantly higher in the plots with naturalized legumes. The effects of naturalized legumes on native and naturalized floristic composition are divergent. Although species diversity and cover were increased by naturalized legumes, the additional species were naturalized legumes per se, which were the only beneficiaries of the enriched soil. The naturalized legumes did not facilitate further invasion by other exotic species, nor did they have an impact upon the native community in terms of cover, species diversity, or composition.  相似文献   

2.
Does variation in environmental harshness explain local and regional species diversity gradients? We hypothesise that for a given life form like trees, greater harshness leads to a smaller range of traits that are viable and thereby also to lower species diversity. On the basis of a strong dependence of maximum tree height on site productivity and other measures of site quality, we propose maximum tree height as an inverse measure of environmental harshness for trees. Our results show that tree species richness is strongly positively correlated with maximum tree height across multiple spatial scales in forests of both eastern and western North America. Maximum tree height co‐varied with species richness along gradients from benign to harsh environmental conditions, which supports the hypothesis that harshness may be a general mechanism limiting local diversity and explaining diversity gradients within a biogeographic region.  相似文献   

3.
  • Functional traits respond to environmental drivers, hence evaluating trait‐environment relationships across spatial environmental gradients can help to understand how multiple drivers influence plant communities. Global‐change drivers such as changes in atmospheric nitrogen deposition occur worldwide, but affect community trait distributions at the local scale, where resources (e.g. light availability) and conditions (e.g. soil pH) also influence plant communities.
  • We investigate how multiple environmental drivers affect community trait responses related to resource acquisition (plant height, specific leaf area (SLA), woodiness, and mycorrhizal status) and regeneration (seed mass, lateral spread) of European temperate deciduous forest understoreys. We sampled understorey communities and derived trait responses across spatial gradients of global‐change drivers (temperature, precipitation, nitrogen deposition, and past land use), while integrating in‐situ plot measurements on resources and conditions (soil type, Olsen phosphorus (P), Ellenberg soil moisture, light, litter mass, and litter quality).
  • Among the global‐change drivers, mean annual temperature strongly influenced traits related to resource acquisition. Higher temperatures were associated with taller understoreys producing leaves with lower SLA, and a higher proportional cover of woody and obligate mycorrhizal (OM) species. Communities in plots with higher Ellenberg soil moisture content had smaller seeds and lower proportional cover of woody and OM species. Finally, plots with thicker litter layers hosted taller understoreys with larger seeds and a higher proportional cover of OM species.
  • Our findings suggest potential community shifts in temperate forest understoreys with global warming, and highlight the importance of local resources and conditions as well as global‐change drivers for community trait variation.
  相似文献   

4.
Environmental gradients are caused by gradual changes in abiotic factors, which affect species abundances and distributions, and are important for the spatial distribution of biodiversity. One prominent environmental gradient is the altitude gradient. Understanding ecological processes associated with altitude gradients may help us to understand the possible effects climate change could have on species communities. We quantified vegetation cover, species richness, species evenness, beta diversity, and spatial patterns of community structure of vascular plants along altitude gradients in a subarctic mountain tundra in northern Sweden. Vascular plant cover and plant species richness showed unimodal relationships with altitude. However, species evenness did not change with altitude, suggesting that no individual species became dominant when species richness declined. Beta diversity also showed a unimodal relationship with altitude, but only for an intermediate spatial scale of 1 km. A lack of relationships with altitude for either patch or landscape scales suggests that any altitude effects on plant spatial heterogeneity occurred on scales larger than individual patches but were not effective across the whole landscape. We observed both nested and modular patterns of community structures, but only the modular patterns corresponded with altitude. Our observations point to biotic regulations of plant communities at high altitudes, but we found both scale dependencies and inconsistent magnitude of the effects of altitude on different diversity components. We urge for further studies evaluating how different factors influence plant communities in high altitude and high latitude environments, as well as studies identifying scale and context dependencies in any such influences.  相似文献   

5.
Tropical montane forests comprise heterogeneous environments along natural gradients of topography and elevation. Human‐induced edge effects further increase the environmental heterogeneity in these forests. The simultaneous effects of natural and human‐induced gradients on the functional diversity of plant leaf traits are poorly understood. In a tropical montane forest in Bolivia, we studied environmental gradients associated with elevation (from 1900 m to 2500 m asl), topography (ridge and gorge), and edge effects (forest edge vs. forest interior), and their relationship with leaf traits and resource‐use strategies. First, we investigated associations of environmental conditions (soil properties and microclimate) with six leaf traits, measured on 119 woody plant species. Second, we evaluated changes in functional composition with community‐weighted means and functional structure with multidimensional functional diversity indices (FRic, FEve and FDiv). We found significant associations between leaf traits and soil properties in accordance with the trade‐off between acquisition and conservation of resources. Functional composition of leaf traits shifted from the dominance of acquisitive species in habitats at low altitudes, gorges, and forest interior to the dominance of conservative species in habitats at high altitudes, ridges, and forest edges. Functional structure was only weakly associated with the environmental gradients. Natural and human‐induced environmental gradients, especially soil properties, are important for driving leaf traits and resource‐use strategies of woody plants. Nevertheless, weak associations between functional structure and environmental gradients suggest a high redundancy of functional leaf traits in this tropical montane forest.  相似文献   

6.
Aim There is debate over whether alien plants necessarily alter the communities they invade or can coexist with native species without discernable impacts. We followed the fate of montane plant communities in response to the experimental sowing of the alien weed Hieracium lepidulum, looking for changes in plant community composition and structure over 6 years. Location Craigieburn Range, New Zealand. Methods We used a replicated randomised block design, with 30 × 30 cm plots (n = 756) subdivided into 5 × 5 cm cells to examine and compare the effects of H. lepidulum at 0.09 m2 (plot) and 0.0025 m2 (cell) scales. Plots were sown with between 0 and 15,625 H. lepidulum seeds in 2003, forming gradients of invader density and cover. Measurements comprised community richness, evenness and diversity along with H. lepidulum density and cover at both scales. The relationships between the invader and local community attributes were modelled using hierarchical mixed‐effect models. Results Plant communities differed in the extent to which they became invaded, with H. lepidulum cover in the plots ranging from 0% to 52%, with a mean of only 1.89%. Plot species richness increased from 2003 to 2009, with a component of this increase (+0.002 species per year) associated with increasing H. lepidulum density. Other relationships between the plant community and H. lepidulum were generally non‐significant. Main conclusions In these montane plant communities, it appears H. lepidulum coexists with the native community with no measurable negative effects after 6 years on species richness, evenness or diversity, even where density and cover of the invader are highest. We suggest H. lepidulum has persisted preferentially at those sites with abiotic conditions sufficient to support a species‐rich assemblage.  相似文献   

7.
Latitudinal and elevational richness gradients have received much attention from ecologists but there is little consensus on underlying causes. One possible proximate cause is increased levels of species turnover, or β diversity, in the tropics compared to temperate regions. Here, we leverage a large botanical dataset to map taxonomic and phylogenetic β diversity, as mean turnover between neighboring 100 × 100 km cells, across the Americas and determine key climatic drivers. We find taxonomic and tip‐weighted phylogenetic β diversity is higher in the tropics, but that basal‐weighted phylogenetic β diversity is highest in temperate regions. Supporting Janzen's ‘mountain passes’ hypothesis, tropical mountainous regions had higher β diversity than temperate regions for taxonomic and tip‐weighted metrics. The strongest climatic predictors of turnover were average temperature and temperature seasonality. Taken together, these results suggest β diversity is coupled to latitudinal richness gradients and that temperature is a major driver of plant community composition and change.  相似文献   

8.
Experimental evidence shows that site fertility is a key modulator underlying plant community changes under climate change. Communities on fertile sites, with species having fast dynamics, have been found to react more strongly to climate change than communities on infertile sites with slow dynamics. However, it is still unclear whether this generally applies to high‐latitude plant communities in natural environments at broad spatial scales. We tested a hypothesis that vegetation of fertile sites experiences greater changes over several decades and thus would be more responsive under contemporary climate change compared to infertile sites that are expected to show more resistance. We resurveyed understorey communities (vascular plants, bryophytes, and lichens) of four infertile and four fertile forest sites along a latitudinal bioclimatic gradient. Sites had remained outside direct human disturbance. We analyzed the magnitude of temporal community turnover, changes in the abundances of plant morphological groups and strategy classes, and changes in species diversity. In agreement with our hypothesis, temporal turnover of communities was consistently greater on fertile sites compared to infertile sites. However, our results suggest that the larger turnover of fertile communities is not primarily related to the direct effects of climatic warming. Furthermore, community changes in both fertile and infertile sites showed remarkable variation in terms of shares of plant functional groups and strategy classes and measures of species diversity. This further emphasizes the essential role of baseline environmental conditions and nonclimatic drivers underlying vegetation changes. Our results show that site fertility is a key determinant of the overall rate of high‐latitude vegetation changes but the composition of plant communities in different ecological contexts is variously impacted by nonclimatic drivers over time.  相似文献   

9.
A synthesis of a long‐term (19 years) study assessing the effects of cattle grazing on the structure and composition of a Mediterranean grassland in north‐eastern Israel is presented, with new insights into the response of the vegetation to grazing management and rainfall. We hypothesized that the plant community studied would be resistant to high grazing intensities and rainfall variability considering the combined long history of land‐use and unpredictable climatic conditions where this community evolved. Treatments included manipulations of stocking densities (moderate, heavy, and very heavy) and of grazing regimes (continuous vs. seasonal), in a factorial design. The effect of interannual rainfall variation on the expression of grazing impacts on the plant community was minor. The main effects of grazing on relative cover of plant functional groups were related to early vs. late seasonal grazing. Species diversity and equitability were remarkably stable across all grazing treatments. A reduction in tall grass cover at higher stocking densities was correlated with increased cover of less palatable groups such as annual and perennial thistles, as well as shorter and prostrate groups such as short annual grasses. This long‐term study shows that interannual fluctuations in plant functional group composition could be partly accounted for by grazing pressure and timing, but not by the measured rainfall variables. Grazing affected the dominance of tall annual grasses. However, the persistence of tall grasses and more palatable species over time, despite large differences in grazing pressure and timing, supports the idea that Mediterranean grasslands are highly resistant to prolonged grazing. Indeed, even under the most extreme grazing conditions applied, there were no signs of deterioration or collapse of the ecosystem. This high resistance to grazing intensity and interannual fluctuation in climatic conditions should favor the persistence of the plant community under forecasted increasing unpredictability due to climate change.  相似文献   

10.
The outcome of plant–plant interactions depends on environmental (e.g. grazing and climatic conditions) and species-specific attributes (e.g. life strategy and dispersal mode of the species involved). However, the joint effects of such factors on pairwise plant–plant interactions, and how they modulate the role of these interactions at the community level, have not been addressed before. We assessed how these species-specific (life strategy and dispersal) and environmental (grazing and rainfall) factors affected the co-occurrence of 681 plant species pairs on open woodlands in south-eastern Australia. Species-specific attributes affected the co-occurrence of most species pairs, with higher co-occurrence levels dominating for drought-intolerant species. The dispersal mechanism only affected drought-tolerant beneficiaries, with more positive co-occurrences for vertebrate-dispersed species. Conversely, the percentage of facilitated species at the community scale declined under higher rainfall availabilities. A significant grazing × rainfall interaction on the percentage of facilitated species suggests that grazing-mediated protection was important under low to moderate, but not high, rainfall availabilities. This study improves our ability to predict changes in plant–plant interactions along environmental gradients, and their effect on community species richness, by highlighting that: (1) species-specific factors were more important than environmental conditions as drivers of a large amount (~37%) of the pairwise co-occurrences evaluated; (2) grazing and rainfall interaction drive the co-occurrence among different species in the studied communities, and (3) the effect of nurse plants on plant species richness will depend on the relative dominance of particular dispersal mechanisms or life strategies prone to be facilitated.  相似文献   

11.
Correlations between community‐weighted mean (CWM) traits and environmental gradients are often assumed to quantify the adaptive value of traits. We tested this assumption by comparing these correlations with models of survival probability using 46 perennial species from long‐term permanent plots in pine forests of Arizona. Survival was modelled as a function of trait × environment interactions, plant size, climatic variation and neighbourhood competition. The effect of traits on survival depended on the environmental conditions, but the two statistical approaches were inconsistent. For example, CWM‐specific leaf area (SLA) and soil fertility were uncorrelated. However, survival was highest for species with low SLA in infertile soil, a result which agreed with expectations derived from the physiological trade‐off underpinning leaf economic theory. CWM trait–environment relationships were unreliable estimates of how traits affected survival, and should only be used in predictive models when there is empirical support for an evolutionary trade‐off that affects vital rates.  相似文献   

12.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

13.
Caatinga vegetation continues to be converted into mosaics of secondary forest stands, but the affect of this process on biodiversity has not yet been examined. We used 35 regenerating and old‐growth stands of Caatinga to examine the recovery of plant assemblages subsequent to slash‐and‐burn agriculture and cattle ranching/pasture in northeastern Brazil. Plant assemblages were contrasted in terms of community structure (stem density/basal area/species richness/diversity), functional (leaf habit/reproductive traits) and taxonomic composition. Soil attributes were also examined to infer potential drivers for cross‐habitat differences. As expected, plant assemblages clearly differed across a large set of community‐level attributes, including all trait categories relative to leaf habit and reproduction (pollination syndrome/floral color, size, type). Overall, old‐growth forest stands supported distinct and more diverse assemblages at the plot and habitat level; e.g., long‐lived tree species were almost exclusively found in old‐growth forest stands. For most attributes, plant assemblages subsequent to pasture exhibited intermediate values between those exhibited by old‐growth forest and those of agriculture‐related stands. Surprisingly, soils exhibited similar fertility‐related scores across habitats. Our results indicate that: (1) sprouting/resprouting represents an important mechanism of forest regeneration; (2) assemblage‐level attributes suggest recovery at distinct rates; (3) forest regeneration implies community‐level changes in both vegetative and reproductive functional attributes, including directional changes; (4) Caatinga is not able to completely recover in a period of 15‐yr following land abandonment; and (5) historical land use affects recovery rates and successional pathways/taxonomic trajectories. Seasonally dry tropical forests may intrinsically cover a wide range of patterns relative to successional model, recovery rates and successional pathways.  相似文献   

14.
Jessica R. Coyle 《Oikos》2017,126(1):111-120
Forest canopies are heterogeneous environments where changes in microclimate over short distances create an opportunity for niche‐based filtering of canopy‐dwelling species assemblages. This environmental filtering may not occur if species' physiological capacities are flexible or if rapid dispersal alleviates compositional differences. I assess the role of humidity, light and temperature gradients in structuring epiphyte communities in temperate deciduous oak (Quercus) canopies and determine whether gradients filter species with fixed traits or whether environmental constraints act primarily to alter individual phenotypes. I measured environmental conditions and seven functional traits related to water and light acquisition on individual macrolichens at 60 sample locations in northern red oaks Quercus rubra in two Piedmont forests in North Carolina, USA. The effects of environmental variables on individual‐level traits and community composition were evaluated using linear mixed models and constrained ordination (RDA). In general, traits and community composition responded weakly to environmental variables and trait variation within taxa was high. Cortex thickness exhibited the strongest response, such that individuals with thicker cortices were found in samples experiencing lower humidity and higher light levels. Overall, gradients of humidity, light and temperature were not strong environmental filters that caused large changes in community composition. This was probably due to phenotypic variability within taxa that enabled species to persist across the full range of environmental conditions measured. Thus, humidity affected the phenotype of individuals, but did not limit species distributions or alter community composition at the scale of branches within trees. Community and trait responses were primarily associated with site‐level differences in humidity, suggesting that in these forests landscape‐scale climatic gradients may be stronger drivers of epiphyte community assembly than intra‐canopy environmental gradients.  相似文献   

15.
Akana E. Noto  Jonathan B. Shurin 《Oikos》2017,126(9):1308-1318
Environmental variability and the frequency of extreme events are predicted to increase in future climate scenarios; however, the role of fluctuations in shaping community composition, diversity and stability is not well understood. Identifying current patterns of association between measures of community stability and climatic means and variability will help elucidate the ways in which altered variability and mean conditions may change communities in the future. Salt marshes provide essential ecosystem services and are increasingly threatened by sea‐level rise, land‐use change, eutrophication and predator loss, yet the effects of temporal environmental variation on salt marshes remain unknown. We synthesized long‐term plant community monitoring data from 11 sites on both coasts of the United States. We used an information‐theoretic approach and linear models to determine the associations among long‐term mean conditions, interannual environmental variability, and plant community stability and diversity. We found that salt marsh community stability and diversity were more strongly related to long‐term means of temperature and precipitation than to interannual variation. Warm and wet environments had fewer species and less turnover among years. Our results suggest that communities in cool, dry environments may be more resilient to climate warming due to greater species richness and turnover. Mean conditions are sufficient to predict contemporary patterns of salt marsh plant community dynamics, but environmental variability may have stronger impacts as it increases with climate change.  相似文献   

16.
A core question involving both plant physiology and community ecology is whether traits from different organs are coordinated across species, beyond pairwise trait correlations. The strength of within‐community trait coordination has been hypothesized to increase along gradients of environmental harshness, due to the cost of adopting ecological strategies out of the viable niche space supported by the abiotic conditions. We evaluated the strength of trait relationship and coordination in a stressful environment using 21 leaf and stem traits of 21 deciduous and evergreen woody species from a heath vegetation growing on coastal sandy plain in northeastern South America. The study region faces marked dry season, high soil salinity and acidity, and poor nutritional conditions. Results from multiple factor analyses supported two weak and independent axes of trait coordination, which accounted for 25%–29% of the trait variance using phylogenetically independent contrasts. Trait correlations on the multiple factor analyses main axis fit well with the global plant economic spectrum, with species investing in small leaves and dense stems as opposed to species with softer stems and large leaves. The species’ positions on the main functional axis corresponded to the competitor‐stress‐tolerant side of Grime's CSR triangle of plant strategies. The weak degree of trait coordination displayed by the heath vegetation species contradicted our expectation of high trait coordination in stressful environmental habitats. The distinct biogeographic origins of the species occurring in the study region and the prevalence of a regional environmental filter coupled with local homogeneous conditions could account for prevalence of trait independence we observed.  相似文献   

17.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

18.
Question: Does long‐term grazing exclusion affect plant species diversity? And does this effect vary with long‐term phytomass accumulation across a regional productivity gradient? Location: Lowland grassy ecosystems across the state of Victoria, southeast Australia. Methods: Floristic surveys and phytomass sampling were conducted across a broad‐scale productivity gradient in grazing exclusion plots and adjacent grazed areas. Differences in species richness, evenness and life‐form evenness between grazed and ungrazed areas were analysed. The environmental drivers of long‐term phytomass accumulation were assessed using multiple linear regression analysis. Results: Species richness declined in the absence of grazing only at the high productivity sites (i.e. when phytomass accumulation was >500 g m?2). Species evenness and life‐form evenness also showed a negative relationship with increasing phytomass accumulation. Phytomass accumulation was positively associated with both soil nitrogen and rainfall, and negatively associated with tree cover. Conclusions: Competitive dominance is a key factor regulating plant diversity in productive grassy ecosystems, but canopy disturbance is not likely to be necessary to maintain diversity in less productive systems. The results support the predictions of models of the effects of grazing on plant diversity, such as the dynamic equilibrium model, whereby the effects of herbivory are context‐dependent and vary according to gradients of rainfall, soil fertility and tree cover.  相似文献   

19.
Questions: What is the contribution of management continuity during the last 30–40 years to variation in species diversity and composition of a calcareous wooded meadow plant community? Is tree cover related to species diversity and composition of the herbaceous layer? What are the effects of local soil gradients on species diversity? Location: Laelatu calcareous wooded meadow, Western Estonian coastal zone. Methods: Plant community composition was assessed in 150 1 m × 1 m plots, located at 30 sites with known management history within Laelatu meadow (7 ha). Light and soil conditions and relative altitude were measured at each plot. DCA was used to analyse variation in species composition and general linear mixed models to analyse the effects of management and environmental parameters on diversity. Results: Management continuity was the primary determinant of plant community composition, followed by light conditions and soil parameters. Species richness, diversity and evenness are positively dependent on management continuity. Spatial autocorrelation is important as well. Diversity started to decline under the tree canopy where 50% or less irradiation reached the level of the herbaceous layer. We did not find significant effects of soil conditions on small‐scale diversity. Conclusions: Management continuity, together with the cover of the tree layer, are the most important determinants of diversity. Despite grassland stands with different management history are located side by side, the regeneration of diversity and composition of plant communities after restoring regular management practices is a slow process.  相似文献   

20.
Trade‐offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号