共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe outbreeding and inbreeding depression maintain mating system differentiation in Epipactis (Orchidaceae) 下载免费PDF全文
In hermaphroditic plants, theory for mating system evolution predicts that populations will evolve to either complete autonomous selfing (AS) or complete outcrossing, depending on the balance between automatic selection favouring self‐fertilization and costs resulting from inbreeding depression (ID). Theory also predicts that selection for selfing can occur rapidly and is driven by purging of genetic load and the loss of ID. Therefore, selfing species are predicted to have low levels of ID or even to suffer from outbreeding depression (OD), whereas predominantly outcrossing species are expected to have high levels of ID. To test these predictions, we related the capacity of AS to the magnitude of early‐acting inbreeding or OD in both allogamous and autogamous species of the orchid genus Epipactis. For each species, the level of AS was assessed under controlled greenhouse conditions, whereas hand‐pollinations were performed to quantify early costs of inbreeding or OD acting at the level of fruit and seed production. In the autogamous species, the capacity of AS was high (> 0.72), whereas in the allogamous species AS was virtually absent (< 0.10). Consistent with our hypothesis, allogamous Epipactis species had significantly higher total ID (average: 0.46) than autogamous species, which showed severe costs of OD (average: ?0.45). Overall, our findings indicate that strong early‐acting ID represents an important mechanism that contributes to allogamy in Epipactis, whereas OD may maintain selfing in species that have evolved to complete selfing. 相似文献
2.
Winn AA Elle E Kalisz S Cheptou PO Eckert CG Goodwillie C Johnston MO Moeller DA Ree RH Sargent RD Vallejo-Marín M 《Evolution; international journal of organic evolution》2011,65(12):3339-3359
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them. 相似文献
3.
Kristin E. Brzeski David R. Rabon Jr Michael J. Chamberlain Lisette P. Waits Sabrina S. Taylor 《Molecular ecology》2014,23(17):4241-4255
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average f = 0.154 and max f = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population. 相似文献
4.
Anther-stigma separation is associated with inbreeding depression in Datura stramonium,a predominantly self-fertilizing annual 总被引:2,自引:0,他引:2
Abstract.— Genetically based variation in outcrossing rate generates lineages within populations that differ in their history of inbreeding. According to some models, mating-system modifiers in such populations will demonstrate both linkage and identity disequilibrium with fitness loci, resulting in lineage-specific inbreeding depression. Other models assert that differences among families in levels of inbreeding depression are mainly attributable to random accumulation of genetic load, unrelated to variation at mating-system loci. We measured female reproductive success of selfed and outcrossed progeny from naturally occurring lineages of Datura stramonium , a predominantly self-fertilizing annual weed that has heritable variation in stigma-anther separation, a trait that influences selfing rates. Progeny from inbred lineages (as identified by high degree of anther-stigma overlap) showed equal levels of seed production, regardless of cross type. Progeny from mixed lineages (as identified by relatively high separation between anthers and stigma) showed moderate levels of inbreeding depression. We found a significant correlation between anther-stigma separation and relative fitness of selfed and outcrossed progeny, suggesting that family-level inbreeding depression may be related to differences among lineages in inbreeding history in this population. Negative inbreeding depression in putatively inbred lineages may be due in part to additive effects or to epistatic interactions among loci. 相似文献
5.
Relatively weak inbreeding depression in selfing but also in outcrossing populations of North American Arabidopsis lyrata 下载免费PDF全文
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata. 相似文献
6.
O. ALA‐HONKOLA A. UDDSTRÖM B. DIAZ PAULI K. LINDSTRÖM 《Journal of evolutionary biology》2009,22(7):1396-1406
The magnitude of inbreeding depression is often larger in traits closely related to fitness, such as survival and fecundity, compared to morphological traits. Reproductive behaviour is also closely associated with fitness, and therefore expected to show strong inbreeding depression. Despite this, little is known about how reproductive behaviour is affected by inbreeding. Here we show that one generation of full‐sib mating results in a decrease in male reproductive performance in the least killifish (Heterandria formosa). Inbred males performed less gonopodial thrusts and thrust attempts than outbred males (δ = 0.38). We show that this behaviour is closely linked with fitness as gonopodial performance correlates with paternity success. Other traits that show inbreeding depression are offspring viability (δ = 0.06) and maturation time of males (δ = 0.19) and females (δ = 0.14). Outbred matings produced a female biased sex ratio whereas inbred matings produced an even sex ratio. 相似文献
7.
Ongoing habitat loss and fragmentation result in rapid population size reductions, which can increase the levels of inbreeding. Consequently, many species are threatened by inbreeding depression, a loss of individual fitness following the mating of close relatives. Here, we investigated inbreeding effects on fitness‐related traits throughout the lifetime of the mustard leaf beetle (Phaedon cochleariae) and mechanisms for the avoidance of inbreeding. Previously, we found that these beetles have family‐specific cuticular hydrocarbon profiles, which are likely not used as recognition cue for precopulatory inbreeding avoidance. Thus, we examined whether adult beetles show postcopulatory inbreeding avoidance instead. For this purpose, we determined the larval hatching rate of eggs laid by females mated sequentially with two nonsiblings, two siblings, a nonsibling, and a sibling or vice versa. The beetles suffered from inbreeding depression throughout their entire ontogeny, as evinced by a prolonged larval development, a decreased larval and adult survival and a decreased reproductive output of inbred compared to outbred individuals. The highest larval hatching rates were detected when females were mated with two nonsiblings or first with a sibling and second with a nonsibling. Significantly lower hatching rates were measured in the treatments with a sibling as second male. Thus, the results do not support the existence of postcopulatory inbreeding avoidance in P. cochleariae, but revealed evidence for second male sperm precedence. Consequently, an alternative strategy to avoid inbreeding costs might exist in this beetle, such as a polyandrous mating system, potentially coupled with a specific dispersal behavior. 相似文献
8.
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load. 相似文献
9.
Interpopulation variation in mating system and late-stage inbreeding depression in Magnolia stellata 总被引:1,自引:0,他引:1
ICHIRO TAMAKI KIYOSHI ISHIDA† SUZUKI SETSUKO NOBUHIRO TOMARU 《Molecular ecology》2009,18(11):2365-2374
Inbreeding has the potential to cause evolutionary changes in populations, although these changes are likely to drive populations to extinction through inbreeding depression and reductions in genetic diversity. We investigated the mating system and late-stage inbreeding depression (δ) in 10 populations of Magnolia stellata using nine microsatellite markers and evaluated the effects of population size and the degree of population isolation through inbreeding and inbreeding depression on the persistence of populations. The outcrossing rates were very similar (~0.7) among populations, but the correlations of paternity, fractions of biparental inbreeding and inbreeding coefficients at the seed stage ( F S ) varied among populations, suggesting that the level of outcrossing was similar among populations, while the quality of it was not. A significant negative correlation was detected between F S and population size. The average value of δ was 0.709, and the values in six of the 10 populations were significant. The values of δ differed among populations, although clear relationships with population size and the degree of population isolation were not detected. However, in one population, which was very small and located in the edge of the species' range, we obtained a very low value of δ (–0.096), which may be indicative of purging or the fixation of deleterious alleles. Existing M. stellata populations that are small (and thus might be expected to have higher frequencies of inbreeding) and have large values of δ may be in danger of declining, even if the populations are located within the central region of the species' range. 相似文献
10.
Céline Devaux Russell Lande Emmanuelle Porcher 《Evolution; international journal of organic evolution》2014,68(11):3051-3065
We analyze evolution of individual flowering phenologies by combining an ecological model of pollinator behavior with a genetic model of inbreeding depression for plant viability. The flowering phenology of a plant genotype determines its expected daily floral display which, together with pollinator behavior, governs the population rate of geitonogamous selfing (fertilization among flowers on the same plant). Pollinators select plant phenologies in two ways: they are more likely to visit plants displaying more flowers per day, and they influence geitonogamous selfing and consequent inbreeding depression via their abundance, foraging behavior, and pollen carry‐over among flowers on a plant. Our model predicts two types of equilibria at stable intermediate selfing rates for a wide range of pollinator behaviors and pollen transfer parameters. Edge equilibria occur at maximal or minimal selfing rates and are constrained by pollinators. Internal equilibria occur between edge equilibria and are determined by a trade‐off between pollinator attraction to large floral displays and avoidance of inbreeding depression due to selfing. We conclude that unavoidable geitonogamous selfing generated by pollinator behavior can contribute to the common occurrence of stable mixed mating in plants. 相似文献
11.
Aino Kalske Pia Mutikainen Anne Muola J. F. Scheepens Liisa Laukkanen Juha‐Pekka Salminen Roosa Leimu 《Ecology letters》2014,17(2):229-238
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish. 相似文献
12.
No inbreeding depression in laboratory‐reared individuals of the parasitoid wasp Allotropa burrelli 下载免费PDF全文
Bastien Quaglietti Lucie Tamisier Géraldine Groussier Alexandre Fleisch Isabelle Le Goff Nicolas Ris Philippe Kreiter Xavier Fauvergue Thibaut Malausa 《Ecology and evolution》2017,7(3):964-973
Inbreeding depression is a major concern in almost all human activities relating to plant and animal breeding. The biological control of pests with natural enemies is no exception, because populations of biocontrol agents experience a series of bottlenecks during importation, rearing, and introduction. A classical biological control program for the Comstock mealybug Pseudococcus comstocki (Hemiptera: Pseudococcidae) was initiated in France in 2008, based on the introduction of an exotic parasitoid, Allotropa burrelli Mues. (Hymenoptera: Platygastridae), a haplodiploid parasitoid imported from Japan. We evaluated the sensitivity of A. burrelli to inbreeding, to optimize rearing and release strategies. We compared several morphological and life‐history traits between the offspring of siblings and the offspring of unrelated parents. We took into account the low level of genetic variability due to the relatively small size of laboratory‐reared populations by contrasting two types of pedigree: one for individuals from a strain founded from a single field population, and the other generated by hybridizing individuals from two strains founded from two highly differentiated populations. Despite this careful design, we obtained no evidence for a negative impact of inbreeding on laboratory‐reared A. burrelli. We discussed the results in light of haplodiploid sex determination and parasitoid mating systems, and classical biological control practices. 相似文献
13.
Sibling competition does not exacerbate inbreeding depression in the burying beetle Nicrophorus vespilloides 下载免费PDF全文
Inbreeding results from matings between relatives and can cause a reduction in offspring fitness, known as inbreeding depression. Previous work has shown that a wide range of environmental stresses, such as extreme temperatures, starvation and parasitism, can exacerbate inbreeding depression. It has recently been argued that stresses due to intraspecific competition should have a stronger effect on the severity of inbreeding depression than stresses due to harsh physical conditions. Here, we tested whether an increase in the intensity of sibling competition can exacerbate inbreeding depression in the burying beetle Nicrophorus vespilloides. We used a 2 × 3 factorial design with offspring inbreeding status (outbred or inbred) and brood size (5, 20, or 40 larvae) as the two factors. We found a main effect of inbreeding status, as inbred larvae had lower survival than outbred larvae, and a main effect of brood size, as larvae in large broods had lower survival and mass than larvae in medium‐sized broods. However, there was no effect of the interaction between inbreeding status and brood size, suggesting that sibling competition did not influence the severity of inbreeding depression. Since we focused on sibling competition within homogeneous broods of either inbred or outbred larvae, we cannot rule out possible effects of sibling competition on inbreeding depression in mixed paternity broods comprising of both inbred and outbred offspring. More information on whether and when sibling competition might influence inbreeding depression can help advance our understanding of the causes underlying variation in the severity of inbreeding depression. 相似文献
14.
Exploring the relationship between tychoparthenogenesis and inbreeding depression in the Desert Locust,Schistocerca gregaria 下载免费PDF全文
Chelsea J. Little Marie‐Pierre Chapuis Laurence Blondin Elodie Chapuis Hélène Jourdan‐Pineau 《Ecology and evolution》2017,7(15):6003-6011
Tychoparthenogenesis, a form of asexual reproduction in which a small proportion of unfertilized eggs can hatch spontaneously, could be an intermediate evolutionary link in the transition from sexual to parthenogenetic reproduction. The lower fitness of tychoparthenogenetic offspring could be due to either developmental constraints or to inbreeding depression in more homozygous individuals. We tested the hypothesis that in populations where inbreeding depression has been purged, tychoparthenogenesis may be less costly. To assess this hypothesis, we compared the impact of inbreeding and parthenogenetic treatments on eight life‐history traits (five measuring inbreeding depression and three measuring inbreeding avoidance) in four laboratory populations of the desert locust, Schistocerca gregaria, with contrasted demographic histories. Overall, we found no clear relationship between the population history (illustrated by the levels of genetic diversity or inbreeding) and inbreeding depression, or between inbreeding depression and parthenogenetic capacity. First, there was a general lack of inbreeding depression in every population, except in two populations for two traits. This pattern could not be explained by the purging of inbreeding load in the studied populations. Second, we observed large differences between populations in their capacity to reproduce through tychoparthenogenesis. Only the oldest laboratory population successfully produced parthenogenetic offspring. However, the level of inbreeding depression did not explain the differences in parthenogenetic success between all studied populations. Differences in development constraints may arise driven by random and selective processes between populations. 相似文献
15.
16.
In some species, populations with few founding individuals can be resilient to extreme inbreeding. Inbreeding seems to be the norm in the common bed bug, Cimex lectularius, a flightless insect that, nevertheless, can reach large deme sizes and persist successfully. However, bed bugs can also be dispersed passively by humans, exposing inbred populations to gene flow from genetically distant populations. The introduction of genetic variation through this outbreeding could lead to increased fitness (heterosis) or be costly by causing a loss of local adaptation or exposing genetic incompatibility between populations (outbreeding depression). Here, we addressed how inbreeding within demes and outbreeding between distant populations impact fitness over two generations in this re‐emerging public health pest. We compared fitness traits of families that were inbred (mimicking reproduction following a founder event) or outbred (mimicking reproduction following a gene flow event). We found that outbreeding led to increased starvation resistance compared to inbred families, but this benefit was lost after two generations of outbreeding. No other fitness benefits of outbreeding were observed in either generation, including no differences in fecundity between the two treatments. Resilience to inbreeding is likely to result from the history of small founder events in the bed bug. Outbreeding benefits may only be detectable under stress and when heterozygosity is maximized without disruption of coadaptation. We discuss the consequences of these results both in terms of inbreeding and outbreeding in populations with genetic and spatial structuring, as well as for the recent resurgence of bed bug populations. 相似文献
17.
Theory predicts that inbreeding depression (ID) should decline via purging in self‐fertilizing populations. Yet, intraspecific comparisons between selfing and outcrossing populations are few and provide only mixed support for this key evolutionary process. We estimated ID for large‐flowered (LF), predominantly outcrossing vs. small‐flowered (SF), predominantly selfing populations of the dune endemic Camissoniopsis cheiranthifolia by comparing selfed and crossed progeny in glasshouse environments differing in soil moisture, and by comparing allozyme‐based estimates of the proportion of seeds selfed and inbreeding coefficient of mature plants. Based on lifetime measures of dry mass and flower production, ID was stronger in nine LF populations [mean δ = 1?(fitness of selfed seed/fitness of outcrossed seed) = 0.39] than 16 SF populations (mean δ = 0.03). However, predispersal ID during seed maturation was not stronger for LF populations, and ID was not more pronounced under simulated drought, a pervasive stress in sand dune habitat. Genetic estimates of δ were also higher for four LF (δ = 1.23) than five SF (δ = 0.66) populations; however, broad confidence intervals around these estimates overlapped. These results are consistent with purging, but selective interference among loci may be required to maintain strong ID in partially selfing LF populations, and trade‐offs between selfed and outcrossed fitness are likely required to maintain outcrossing in SF populations. 相似文献
18.
Nielsen JF English S Goodall-Copestake WP Wang J Walling CA Bateman AW Flower TP Sutcliffe RL Samson J Thavarajah NK Kruuk LE Clutton-Brock TH Pemberton JM 《Molecular ecology》2012,21(11):2788-2804
Mating between relatives often results in negative fitness consequences or inbreeding depression. However, the expression of inbreeding in populations of wild cooperative mammals and the effects of environmental, maternal and social factors on inbreeding depression in these systems are currently not well understood. This study uses pedigree‐based inbreeding coefficients from a long‐term study of meerkats (Suricata suricatta) in South Africa to reveal that 44% of the population have detectably non‐zero (F > 0) inbreeding coefficients. 15% of these inbred individuals were the result of moderate inbreeding (F ≥ 0.125), although such inbreeding events almost solely occurred when mating individuals had no prior experience of each other. Inbreeding depression was evident for a range of traits: pup mass at emergence from the natal burrow, hind‐foot length, growth until independence and juvenile survival. However, we found no evidence of significant inbreeding depression for skull and forearm length or for pup survival. This research provides a rare investigation into inbreeding in a cooperative mammal, revealing high levels of inbreeding, considerable negative consequences and complex interactions with the social environment. 相似文献
19.
Inbreeding is of concern in supportive breeding programmes in Pacific salmonids, Oncorhynchus spp, where the number of breeding adults is limited by rearing space or poor survival to adulthood, and large numbers are released to supplement wild stocks and fisheries. We reconstructed the pedigree of 6602 migratory hatchery steelhead (Oncorhynchus mykiss) over four generations, to determine the incidence and fitness consequences of inbreeding in a northwest USA programme. The hatchery maintained an effective population size, = 107.9 from F0 to F2, despite an increasing census size (N), which resulted in a decreasing Ne/N ratio (0.35 in F0 to 0.08 in F2). The reduced ratio was attributed to a small broodstock size, nonrandom transfers and high variance in reproductive success (particularly in males). We observed accumulation of inbreeding from the founder generation (in F4, percentage individuals with inbreeding coefficients Δf > 0 = 15.7%). Generalized linear mixed models showed that body length and weight decreased significantly with increasing Δf, and inbred fish returned later to spawn in a model that included father identity. However, there was no significant correlation between Δf and age at return, female fecundity or gonad weight. Similarly, there was no relationship between Δf and reproductive success of F2 and F3 individuals, which might be explained by the fact that reproductive success is partially controlled by hatchery mating protocols. This study is one of the first to show that small changes in inbreeding coefficient can affect some fitness‐related traits in a monitored population propagated and released to the wild. 相似文献
20.
The cost of inbreeding (inbreeding depression, ID) is an important variable in the maintenance of reproductive variation. Ecological interactions such as herbivory could modulate this cost, provided that defence traits harbour deleterious mutations and herbivores are responsible for differences in fitness. In the field, we manipulated the presence of herbivores on experimentally inbred and outcrossed plants of Solanum carolinense (horsenettle) for three years. Damage was greater on inbred plants, and ID for growth and fitness was significantly greater under herbivory. Inbreeding reduced phenolic expression both qualitatively (phytochemical diversity) and quantitatively, indicating deleterious load at loci related to the biosynthesis of defence compounds. Our results indicate that inbreeding effects on plant–herbivore interactions are mediated by changes to functional plant metabolites, suggesting that variation in inbreeding could be a predictor of defence trait variation. The magnitude of herbivore‐mediated, ecological ID indicates that herbivores could maintain outcrossing mating systems in nature. 相似文献