共查询到20条相似文献,搜索用时 0 毫秒
1.
Kristin E. Brzeski David R. Rabon Jr Michael J. Chamberlain Lisette P. Waits Sabrina S. Taylor 《Molecular ecology》2014,23(17):4241-4255
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average f = 0.154 and max f = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population. 相似文献
2.
Inbreeding is of concern in supportive breeding programmes in Pacific salmonids, Oncorhynchus spp, where the number of breeding adults is limited by rearing space or poor survival to adulthood, and large numbers are released to supplement wild stocks and fisheries. We reconstructed the pedigree of 6602 migratory hatchery steelhead (Oncorhynchus mykiss) over four generations, to determine the incidence and fitness consequences of inbreeding in a northwest USA programme. The hatchery maintained an effective population size, = 107.9 from F0 to F2, despite an increasing census size (N), which resulted in a decreasing Ne/N ratio (0.35 in F0 to 0.08 in F2). The reduced ratio was attributed to a small broodstock size, nonrandom transfers and high variance in reproductive success (particularly in males). We observed accumulation of inbreeding from the founder generation (in F4, percentage individuals with inbreeding coefficients Δf > 0 = 15.7%). Generalized linear mixed models showed that body length and weight decreased significantly with increasing Δf, and inbred fish returned later to spawn in a model that included father identity. However, there was no significant correlation between Δf and age at return, female fecundity or gonad weight. Similarly, there was no relationship between Δf and reproductive success of F2 and F3 individuals, which might be explained by the fact that reproductive success is partially controlled by hatchery mating protocols. This study is one of the first to show that small changes in inbreeding coefficient can affect some fitness‐related traits in a monitored population propagated and released to the wild. 相似文献
3.
Junmin Li Jingjing Gu Xinglong Wang Wenbiao Zhang Zexin Jin 《Ecology and evolution》2020,10(15):8439-8448
Pollen limitation negatively impacts endangered and endemic plants with small fragmented populations, such as Sinocalycanthus chinensis, an endangered plant endemic to China. In this study, we analyzed the pollen limitation of the S. chinensis Damingshan (DMS) population in 2006, 2009, and 2010, and crossed plants with mates separated by different distances, both within and between populations. The DMS population exhibited strong pollen limitation in fruit set, seed set, and seeds per fruit in 2006, 2009, and 2010. The average accumulated pollen limitation (for fruit set times seeds per fruit) was 0.510 ± 0.180. Progeny crossed with pollen from intermediate neighboring plants within the same population (separated by 30–50 m from pollen recipients) had the lowest fitness. No optimal outcrossing distance was found within the DMS population. Progeny from crosses with the Shunxiwu (SXW) and Daleishan (DLS) populations performed relatively better, while those from crosses with Qingliangfeng (QLF) and Longxushan (LXS) populations performed worse. Compared with average reproductive success, outbreeding depression was found in progeny from crosses with the LXS and QLF populations. Reproductive success from pure self‐pollination indicated S. chinensis is self‐compatible. Geitonogamous selfing increased reproductive success. Based on geitonogamous selfing, the proportion of selfed offspring was relatively high. These results provide basic references for the conservation of this species. 相似文献
4.
Mikael Åkesson Olof Liberg Håkan Sand Petter Wabakken Staffan Bensch Øystein Flagstad 《Molecular ecology》2016,25(19):4745-4756
Natural populations are becoming increasingly fragmented which is expected to affect their viability due to inbreeding depression, reduced genetic diversity and increased sensitivity to demographic and environmental stochasticity. In small and highly inbred populations, the introduction of only a few immigrants may increase vital rates significantly. However, very few studies have quantified the long‐term success of immigrants and inbred individuals in natural populations. Following an episode of natural immigration to the isolated, severely inbred Scandinavian wolf (Canis lupus) population, we demonstrate significantly higher pairing and breeding success for offspring to immigrants compared to offspring from native, inbred pairs. We argue that inbreeding depression is the underlying mechanism for the profound difference in breeding success. Highly inbred wolves may have lower survival during natal dispersal as well as competitive disadvantage to find a partner. Our study is one of the first to quantify and compare the reproductive success of first‐generation offspring from migrants vs. native, inbred individuals in a natural population. Indeed, our data demonstrate the profound impact single immigrants can have in small, inbred populations, and represent one of very few documented cases of genetic rescue in a population of large carnivores. 相似文献
5.
Jun Shi Jasmin Joshi Katja Tielbörger Koen J. F. Verhoeven Mirka Macel 《Ecology and evolution》2018,8(7):3675-3684
Admixture is the hybridization between populations within one species. It can increase plant fitness and population viability by alleviating inbreeding depression and increasing genetic diversity. However, populations are often adapted to their local environments and admixture with distant populations could break down local adaptation by diluting the locally adapted genomes. Thus, admixed genotypes might be selected against and be outcompeted by locally adapted genotypes in the local environments. To investigate the costs and benefits of admixture, we compared the performance of admixed and within‐population F1 and F2 generations of the European plant Lythrum salicaria in a reciprocal transplant experiment at three European field sites over a 2‐year period. Despite strong differences between site and plant populations for most of the measured traits, including herbivory, we found limited evidence for local adaptation. The effects of admixture depended on experimental site and plant population, and were positive for some traits. Plant growth and fruit production of some populations increased in admixed offspring and this was strongest with larger parental distances. These effects were only detected in two of our three sites. Our results show that, in the absence of local adaptation, admixture may boost plant performance, and that this is particularly apparent in stressful environments. We suggest that admixture between foreign and local genotypes can potentially be considered in nature conservation to restore populations and/or increase population viability, especially in small inbred or maladapted populations. 相似文献
6.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata. 相似文献
7.
N. Pekkala K. E. Knott J. S. Kotiaho K. Nissinen M. Puurtinen 《Journal of evolutionary biology》2012,25(11):2181-2193
Interpopulation hybridization can increase the viability of small populations suffering from inbreeding and genetic drift, but it can also result in outbreeding depression. The outcome of hybridization can depend on various factors, including the level of genetic divergence between the populations, and the number of source populations. Furthermore, the effects of hybridization can change between generations following the hybridization. We studied the effects of population divergence (low vs. high level of divergence) and the number of source populations (two vs. four source populations) on the viability of hybrid populations using experimental Drosophila littoralis populations. Population viability was measured for seven generations after hybridization as proportion of populations facing extinction and as per capita offspring production. Hybrid populations established at the low level of population divergence were more viable than the inbred source populations and had higher offspring production than the large control population. The positive effects of hybridization lasted for the seven generations. In contrast, at the high level of divergence, the viability of the hybrid populations was not significantly different from the inbred source populations, and offspring production in the hybrid populations was lower than in the large control population. The number of source populations did not have a significant effect at either low or high level of population divergence. The study shows that the benefits of interpopulation hybridization may decrease with increasing divergence of the populations, even when the populations share identical environmental conditions. We discuss the possible genetic mechanisms explaining the results and address the implications for conservation of populations. 相似文献
8.
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load. 相似文献
9.
In some species, populations with few founding individuals can be resilient to extreme inbreeding. Inbreeding seems to be the norm in the common bed bug, Cimex lectularius, a flightless insect that, nevertheless, can reach large deme sizes and persist successfully. However, bed bugs can also be dispersed passively by humans, exposing inbred populations to gene flow from genetically distant populations. The introduction of genetic variation through this outbreeding could lead to increased fitness (heterosis) or be costly by causing a loss of local adaptation or exposing genetic incompatibility between populations (outbreeding depression). Here, we addressed how inbreeding within demes and outbreeding between distant populations impact fitness over two generations in this re‐emerging public health pest. We compared fitness traits of families that were inbred (mimicking reproduction following a founder event) or outbred (mimicking reproduction following a gene flow event). We found that outbreeding led to increased starvation resistance compared to inbred families, but this benefit was lost after two generations of outbreeding. No other fitness benefits of outbreeding were observed in either generation, including no differences in fecundity between the two treatments. Resilience to inbreeding is likely to result from the history of small founder events in the bed bug. Outbreeding benefits may only be detectable under stress and when heterozygosity is maximized without disruption of coadaptation. We discuss the consequences of these results both in terms of inbreeding and outbreeding in populations with genetic and spatial structuring, as well as for the recent resurgence of bed bug populations. 相似文献
10.
Hallvard Haanes Stine S. Markussen Ivar Herfindal Knut H. Røed Erling J. Solberg Morten Heim Liv Midthjell Bernt‐Erik Sæther 《Ecology and evolution》2013,3(12):4230-4242
Inbreeding can affect fitness‐related traits at different life history stages and may interact with environmental variation to induce even larger effects. We used genetic parentage assignment based on 22 microsatellite loci to determine a 25 year long pedigree for a newly established island population of moose with 20–40 reproducing individuals annually. We used the pedigree to calculate individual inbreeding coefficients and examined for effects of individual inbreeding (f) and heterozygosity on fitness‐related traits. We found negative effects of f on birth date, calf body mass and twinning rate. The relationship between f and calf body mass and twinning rate were found to be separate but weaker after accounting for birth date. We found no support for an inbreeding effect on the age‐specific lifetime reproductive success of females. The influence of f on birth date was related to climatic conditions during the spring prior to birth, indicating that calves with a low f were born earlier after a cold spring than calves with high f. In years with a warm spring, calf f did not affect birth date. The results suggest that severe inbreeding in moose has both indirect effects on fitness through delayed birth and lower juvenile body mass, as well as separate direct effects, as there still was a significant relationship between f and twinning rate after accounting for birth date and body mass as calf. Consequently, severe inbreeding as found in the study population may have consequences for population growth and extinction risk. 相似文献
11.
Christian Damgaard 《Evolution; international journal of organic evolution》1996,50(4):1425-1431
The fixation rates of selfing rate modifiers were found by stochastic simulation in an infinite site model, including effects of several deleterious alleles with variable effects, which were randomly distributed in the genome without assuming any pollen discounting. Previous results on the evolution of selfing obtained by more precise methods were in this study further validated, and it was concluded that the effect of genetic associations on the evolution of mating systems is small except in the case of full pollen discounting. Furthermore, attention was given to the uneven distribution of the genetic load in the population, and the accompanying large among-genome variation in fixation rates. This among-genome variation will be of significance for the evolution of mating systems. 相似文献
12.
Svenja Belaoussoff Joel S. Shore 《Evolution; international journal of organic evolution》1995,49(3):545-556
Outcrossing rates varied from 0% to 69% among Jamaican populations of Turnera ulmifolia. A correlation between increasing herkogamy and outcrossing rate occurred among populations. Predictions from sex-allocation theory were tested by estimating allocation to reproductive functions. Significant differences in allocation patterns occurred among populations, but they were not correlated with outcrossing rates. The fitness consequences of inbreeding were assessed in high- and low-density greenhouse experiments for nine populations with variable outcrossing rates. No evidence for inbreeding depression occurred in early portions of the life history, but multiplicative fitness functions provide evidence for inbreeding depression. We tested the prediction that selfing populations have lower levels of inbreeding depression than outcrossing populations but found no significant correlation. 相似文献
13.
Abstract.— Genetically based variation in outcrossing rate generates lineages within populations that differ in their history of inbreeding. According to some models, mating-system modifiers in such populations will demonstrate both linkage and identity disequilibrium with fitness loci, resulting in lineage-specific inbreeding depression. Other models assert that differences among families in levels of inbreeding depression are mainly attributable to random accumulation of genetic load, unrelated to variation at mating-system loci. We measured female reproductive success of selfed and outcrossed progeny from naturally occurring lineages of Datura stramonium , a predominantly self-fertilizing annual weed that has heritable variation in stigma-anther separation, a trait that influences selfing rates. Progeny from inbred lineages (as identified by high degree of anther-stigma overlap) showed equal levels of seed production, regardless of cross type. Progeny from mixed lineages (as identified by relatively high separation between anthers and stigma) showed moderate levels of inbreeding depression. We found a significant correlation between anther-stigma separation and relative fitness of selfed and outcrossed progeny, suggesting that family-level inbreeding depression may be related to differences among lineages in inbreeding history in this population. Negative inbreeding depression in putatively inbred lineages may be due in part to additive effects or to epistatic interactions among loci. 相似文献
14.
In hermaphroditic plants, theory for mating system evolution predicts that populations will evolve to either complete autonomous selfing (AS) or complete outcrossing, depending on the balance between automatic selection favouring self‐fertilization and costs resulting from inbreeding depression (ID). Theory also predicts that selection for selfing can occur rapidly and is driven by purging of genetic load and the loss of ID. Therefore, selfing species are predicted to have low levels of ID or even to suffer from outbreeding depression (OD), whereas predominantly outcrossing species are expected to have high levels of ID. To test these predictions, we related the capacity of AS to the magnitude of early‐acting inbreeding or OD in both allogamous and autogamous species of the orchid genus Epipactis. For each species, the level of AS was assessed under controlled greenhouse conditions, whereas hand‐pollinations were performed to quantify early costs of inbreeding or OD acting at the level of fruit and seed production. In the autogamous species, the capacity of AS was high (> 0.72), whereas in the allogamous species AS was virtually absent (< 0.10). Consistent with our hypothesis, allogamous Epipactis species had significantly higher total ID (average: 0.46) than autogamous species, which showed severe costs of OD (average: ?0.45). Overall, our findings indicate that strong early‐acting ID represents an important mechanism that contributes to allogamy in Epipactis, whereas OD may maintain selfing in species that have evolved to complete selfing. 相似文献
15.
- Self‐fertilisation that is delayed until after opportunities for outcrossing have ceased has been argued to provide both the reproductive assurance benefits of selfing and the genetic advantages of outcrossing. In the Campanulaceae, presentation of pollen on stylar hairs and progressive stigma curvature have been hypothesised to facilitate delayed selfing, but experimental tests are lacking. Stigma curvature is common in Campanula, a genus largely characterised by self‐incompatibility, and therefore is unlikely to have initially evolved to promote self‐fertilisation. In derived self‐compatible species, however, stigma curvature might serve the secondary function of delayed selfing.
- We investigated delayed selfing in Triodanis perfoliata, a self‐compatible relative of Campanula. Using floral manipulation experiments and pollen tube observations, we quantified the extent and timing of self‐pollination. Further, we hypothesised that, if stigma curvature provides the benefit of delayed selfing in Triodanis, selection should have favoured retention of self‐pollen through the loss of a stylar hair retraction mechanism.
- Results of a stigma removal experiment indicated that autonomous selfing produces partial seed set, but only some selfing was delayed. Pollen tube observations and a flower senescence assay also supported the finding of partial delayed selfing. Scanning electron microscopy revealed that pollen‐collecting hairs retract during anthesis, which may limit the extent of delayed selfing.
- Delayed selfing appeared to be only partially effective in T. perfoliata. The stylar hair retraction in this species would seem to contradict selection for selfing. We suggest that caution and rigour are needed in interpreting floral traits as adaptive mechanisms for delayed selfing.
16.
Helen R. Taylor 《Ecology and evolution》2015,5(15):3140-3150
Genetic marker‐based estimators remain a popular tool for measuring relatedness (rxy) and inbreeding (F) coefficients at both the population and individual level. The performance of these estimators fluctuates with the number and variability of markers available, and the relatedness composition and demographic history of a population. Several methods are available to evaluate the reliability of the estimates of rxy and F, some of which are implemented in the program COANCESTRY. I used the simulation module in COANCESTRY since assess the performance of marker‐based estimators of rxy and F in a species with very low genetic diversity, New Zealand's little spotted kiwi (Apteryx owenii). I also conducted a review of published papers that have used COANCESTRY as its release to assess whether and how the reliability of the estimates of rxy and F produced by genetic markers are being measured and reported in published studies. My simulation results show that even when the correlation between true (simulated) and estimated rxy or F is relatively high (Pearson's r = 0.66–0.72 and 0.81–0.85, respectively) the imprecision of the estimates renders them highly unreliable on an individual basis. The literature review demonstrates that the majority of studies do not report the reliability of marker‐based estimates of rxy and F. There is currently no standard practice for selecting the best estimator for a given data set or reporting an estimator's performance. This could lead to experimental results being interpreted out of context and render the robustness of conclusions based on measures of rxy and F debatable. 相似文献
17.
Nicolas O. Rode Eva J.P. Lievens Elodie Flaven Adeline Segard Roula Jabbour‐Zahab Marta I. Sanchez Thomas Lenormand 《Ecology letters》2013,16(4):493-501
Grouping behaviours (e.g. schooling, shoaling and swarming) are commonly explicated through adaptive hypotheses such as protection against predation, access to mates or improved foraging. However, the hypothesis that aggregation can result from manipulation by parasites to increase their transmission has never been demonstrated. We investigated this hypothesis using natural populations of two crustacean hosts (Artemia franciscana and Artemia parthenogenetica) infected with one cestode and two microsporidian parasites. We found that swarming propensity increased in cestode‐infected hosts and that red colour intensity was higher in swarming compared with non‐swarming infected hosts. These effects likely result in increased cestode transmission to its final avian host. Furthermore, we found that microsporidian‐infected hosts had both increased swarming propensity and surfacing behaviour. Finally, we demonstrated using experimental infections that these concurrent manipulations result in increased spore transmission to new hosts. Hence, this study suggests that parasites can play a prominent role in host grouping behaviours. 相似文献
18.
19.
Bastien Quaglietti Lucie Tamisier Géraldine Groussier Alexandre Fleisch Isabelle Le Goff Nicolas Ris Philippe Kreiter Xavier Fauvergue Thibaut Malausa 《Ecology and evolution》2017,7(3):964-973
Inbreeding depression is a major concern in almost all human activities relating to plant and animal breeding. The biological control of pests with natural enemies is no exception, because populations of biocontrol agents experience a series of bottlenecks during importation, rearing, and introduction. A classical biological control program for the Comstock mealybug Pseudococcus comstocki (Hemiptera: Pseudococcidae) was initiated in France in 2008, based on the introduction of an exotic parasitoid, Allotropa burrelli Mues. (Hymenoptera: Platygastridae), a haplodiploid parasitoid imported from Japan. We evaluated the sensitivity of A. burrelli to inbreeding, to optimize rearing and release strategies. We compared several morphological and life‐history traits between the offspring of siblings and the offspring of unrelated parents. We took into account the low level of genetic variability due to the relatively small size of laboratory‐reared populations by contrasting two types of pedigree: one for individuals from a strain founded from a single field population, and the other generated by hybridizing individuals from two strains founded from two highly differentiated populations. Despite this careful design, we obtained no evidence for a negative impact of inbreeding on laboratory‐reared A. burrelli. We discussed the results in light of haplodiploid sex determination and parasitoid mating systems, and classical biological control practices. 相似文献
20.
Outi Ala‐Honkola David J. Hosken Mollie K. Manier Stefan Lüpold Elizabeth M. Droge‐Young Kirstin S. Berben William F. Collins John M. Belote Scott Pitnick 《Ecology and evolution》2013,3(7):2089-2102
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little‐to‐no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent‐tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males. 相似文献