首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

2.
3.
4.
5.
6.
7.
We consider models for hierarchical count data, subject to overdispersion and/or excess zeros. Molenberghs et al. ( 2007 ) and Molenberghs et al. ( 2010 ) extend the Poisson‐normal generalized linear‐mixed model by including gamma random effects to accommodate overdispersion. Excess zeros are handled using either a zero‐inflation or a hurdle component. These models were studied by Kassahun et al. ( 2014 ). While flexible, they are quite elaborate in parametric specification and therefore model assessment is imperative. We derive local influence measures to detect and examine influential subjects, that is subjects who have undue influence on either the fit of the model as a whole, or on specific important sub‐vectors of the parameter vector. The latter include the fixed effects for the Poisson and for the excess‐zeros components, the variance components for the normal random effects, and the parameters describing gamma random effects, included to accommodate overdispersion. Interpretable influence components are derived. The method is applied to data from a longitudinal clinical trial involving patients with epileptic seizures. Even though the data were extensively analyzed in earlier work, the insight gained from the proposed diagnostics, statistically and clinically, is considerable. Possibly, a small but important subgroup of patients has been identified.  相似文献   

8.
9.
10.
11.
Count data sets are traditionally analyzed using the ordinary Poisson distribution. However, such a model has its applicability limited as it can be somewhat restrictive to handle specific data structures. In this case, it arises the need for obtaining alternative models that accommodate, for example, (a) zero‐modification (inflation or deflation at the frequency of zeros), (b) overdispersion, and (c) individual heterogeneity arising from clustering or repeated (correlated) measurements made on the same subject. Cases (a)–(b) and (b)–(c) are often treated together in the statistical literature with several practical applications, but models supporting all at once are less common. Hence, this paper's primary goal was to jointly address these issues by deriving a mixed‐effects regression model based on the hurdle version of the Poisson–Lindley distribution. In this framework, the zero‐modification is incorporated by assuming that a binary probability model determines which outcomes are zero‐valued, and a zero‐truncated process is responsible for generating positive observations. Approximate posterior inferences for the model parameters were obtained from a fully Bayesian approach based on the Adaptive Metropolis algorithm. Intensive Monte Carlo simulation studies were performed to assess the empirical properties of the Bayesian estimators. The proposed model was considered for the analysis of a real data set, and its competitiveness regarding some well‐established mixed‐effects models for count data was evaluated. A sensitivity analysis to detect observations that may impact parameter estimates was performed based on standard divergence measures. The Bayesian ‐value and the randomized quantile residuals were considered for model diagnostics.  相似文献   

12.
13.
14.
15.
Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.  相似文献   

16.
17.
In many clinical trials, multiple time‐to‐event endpoints including the primary endpoint (e.g., time to death) and secondary endpoints (e.g., progression‐related endpoints) are commonly used to determine treatment efficacy. These endpoints are often biologically related. This work is motivated by a study of bone marrow transplant (BMT) for leukemia patients, who may experience the acute graft‐versus‐host disease (GVHD), relapse of leukemia, and death after an allogeneic BMT. The acute GVHD is associated with the relapse free survival, and both the acute GVHD and relapse of leukemia are intermediate nonterminal events subject to dependent censoring by the informative terminal event death, but not vice versa, giving rise to survival data that are subject to two sets of semi‐competing risks. It is important to assess the impacts of prognostic factors on these three time‐to‐event endpoints. We propose a novel statistical approach that jointly models such data via a pair of copulas to account for multiple dependence structures, while the marginal distribution of each endpoint is formulated by a Cox proportional hazards model. We develop an estimation procedure based on pseudo‐likelihood and carry out simulation studies to examine the performance of the proposed method in finite samples. The practical utility of the proposed method is further illustrated with data from the motivating example.  相似文献   

18.
Understanding factors related to the range expansion trajectory of a successful invasive species may provide insights into environmental variables that favour additional expansion or guide monitoring and survey efforts for this and other invasive species. We examined the relationship of presence and abundance of Eurasian Collared Doves Streptopelia decaocto to environmental factors using recent data from the North American Breeding Bird Survey to understand factors influencing its expansion into the continental USA. A zero‐inflated Poisson (ZIP) model was used to account for excess zero observations because this species was not observed on the majority of survey routes, despite its large geographical range. Model fit was improved when we included environmental covariates as compared with the null model, which only included distance from the route where this species was first observed. Probability of zero count was positively related to the distance from the first route and road density and was inversely related to minimum temperature and distance to coast. Abundance of the species was positively related to road density and was inversely related to annual precipitation and distance to coast. Random intercept by land‐cover type also improved model fit. Model fit was improved with the ZIP model over the standard Poisson model, suggesting that presence and abundance of this species are characterized by different environmental factors. However, overall low accuracy of model‐predicted presence/absence and abundance with the independent validation dataset may indicate either that there are other explanatory factors or that there is great uncertainty in the species’ colonization process. Our large‐scale study provides additional evidence that the range expansion of this species tends to follow human‐altered landscapes such as road and agricultural areas as well as responding to general geographical features such as coastlines or thermal clines. Such patterns may hold true for other invasive species and may provide guidelines for monitoring and assessment activities in other invasive taxa.  相似文献   

19.
20.
The use of control charts for monitoring schemes in medical context should consider adjustments to incorporate the specific risk for each individual. Some authors propose the use of a risk‐adjusted survival time cumulative sum (RAST CUSUM) control chart to monitor a time‐to‐event outcome, possibly right censored, using conventional survival models, which do not contemplate the possibility of cure of a patient. We propose to extend this approach considering a risk‐adjusted CUSUM chart, based on a cure rate model. We consider a regression model in which the covariates affect the cure fraction. The CUSUM scores are obtained for Weibull and log‐logistic promotion time model to monitor a scale parameter for nonimmune individuals. A simulation study was conducted to evaluate and compare the performance of the proposed chart (RACUF CUSUM) with RAST CUSUM, based on optimal control limits and average run length in different situations. As a result, we note that the RAST CUSUM chart is inappropriate when applied to data with a cure rate, while the proposed RACUF CUSUM chart seems to have similar performance if applied to data without a cure rate. The proposed chart is illustrated with simulated data and with a real data set of patients with heart failure treated at the Heart Institute (InCor), at the University of São Paulo, Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号