首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesodinium is a globally distributed ciliate genus forming frequent and recurrent blooms in diverse marine habitats. Here, we describe a new marine species, Mesodinium coatsi n. sp., originally isolated from interstitial water of surface sand samples collected at Mohang Beach, Korea. The species was maintained under a mixotrophic growth condition for longer than 1 yr by providing a cryptomonad, Chroomonas sp., as the sole prey. Cell morphology and subcellular structure were examined by light microscopy, scanning, and transmission electron microscopy, and molecular phylogeny was inferred from nuclear‐encoded 18S rDNA sequence data. Like other Mesodinium species, M. coatsi consisted of two hemispheres separated by two types of kinetids, and had tentacles located at the oral end of the cell. Several food vacuoles were observed in the cytoplasm, and partially digested prey cells sometimes existed in food vacuoles. Kinetids and the associated accessory structures were quite similar to those previously reported, but M. coatsi was differentiated from other marine Mesodinium species by ultrastructural characters of the dikinetids, polykinetids, and tentacles. We also provided a detailed illustration of infraciliature. Molecular phylogeny revealed that M. coatsi and Mesodinium chamaeleon were closely related to each other.  相似文献   

2.
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 103 cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was ?0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids.  相似文献   

3.
The dinoflagellate Amylax triacantha is known to retain plastids of cryptophyte origin by engulfing the mixotrophic ciliate Mesodinium rubrum, itself a consumer of cryptophytes. However, there is no information on the fate of the prey's organelles and the photosynthetic performance of the newly retained plastids in A. triacantha. In this study, we conducted a starvation experiment to observe the intracellular organization of the prey's organelles and temporal changes in the photosynthetic efficiency of acquired plastids in A. triacantha. The ultrastructural observations revealed that while the chloroplast‐mitochondria complexes and nucleus of cryptophyte were retained by A. triacantha, other ciliate organelles were digested in food vacuoles. Acquired plastids were retained in A. triacantha for about 1 mo and showed photosynthetic activities for about 18 d when measured by a pulse‐amplitude modulation fluorometer.  相似文献   

4.
Phototrophic Dinophysis species are known to acquire plastids of the cryptophyte Teleaulax amphioxeia through feeding on the ciliate Mesodinium rubrum or M. cf. rubrum. In addition, several molecular studies have detected plastid encoding genes of various algal taxa within field populations of Dinophysis species. The trophic pathway by which Dinophysis species acquire plastids from algae other than the cryptophyte genus Teleaulax, however, is unknown. In this study, we examined the fate of prey organelles and plastid genes obtained by Dinophysis caudata through ingestion of Mesodinium coatsi, a benthic ciliate that retains green plastids of Chroomonas sp. Transmission electron microscopy and molecular analysis revealed relatively rapid digestion of prey-derived plastids. Following digestion of M. coatsi, however, photodamaged D. caudata cells having olive-green rather than reddish-brown plastids were able to recover some of their original reddish-brown pigmentation. Results further suggest that plastid genes of various algal taxa detected in field populations of Dinophysis species may reflect prey diversity rather than sequestration of multiple plastid types. Ingestion and digestion of prey other than M. rubrum or M. cf. rubrum may also provide nutritional requirements needed to repair and perhaps maintain sequestered T. amphioxeia plastids.  相似文献   

5.
The peridinin‐containing plastid found in most photosynthetic dinoflagellates is thought to have been replaced in a few lineages by plastids of chlorophyte, diatom, or haptophyte origin. Other distinct lineages of phagotrophic dinoflagellates retain functional plastids obtained from algal prey for different durations and with varying source species specificity. 18S rRNA gene sequence analyses have placed a novel gymnodinoid dinoflagellate isolated from the Ross Sea (RSD) in the Kareniaceae, a family of dinoflagellates with permanent plastids of haptophyte origin. In contrast to other species in this family, the RSD contains kleptoplastids sequestered from its prey, Phaeocystis antarctica. Culture experiments were employed to determine whether the RSD fed selectively on P. antarctica when offered in combination with another polar haptophyte or cryptophyte species, and whether the RSD, isolated from its prey and starved, would take up plastids from P. antarctica or from other polar haptophyte or cryptophyte species. Evidence was obtained for selective feeding on P. antarctica, plastid uptake from P. antarctica, and increased RSD growth in the presence of P. antarctica. The presence of a peduncle‐like structure in the RSD suggests that kleptoplasts are obtained by myzocytosis. RSD cells incubated without P. antarctica were capable of survival for at least 29.5 months. This remarkable longevity of the RSD's kleptoplasts and its species specificity for prey and plastid source is consistent with its prolonged co‐evolution with P. antarctica. It may also reflect the presence of a plastid protein import mechanism and genes transferred to the dinokaryon from a lost permanent haptophyte plastid.  相似文献   

6.
Acquired phototrophy, i.e. the use of chloroplasts from ingested prey, can be found among some species of dinoflagellates and ciliates. The best studied examples of this phenomenon in these groups are within the ciliate genus Mesodinium and the dinoflagellate genus Dinophysis, both ecologically important genera with a worldwide distribution. Mesodinium species differ considerably in their carbon metabolism. Some species rely almost exclusively on food uptake, while other species rely mostly on photosynthesis. In Mesodinium with acquired phototrophy, a number of prey organelles in addition to chloroplasts may be retained, and the host ciliate has considerable control over the acquired chloroplasts; Mesodinium rubrum is capable of dividing its acquired chloroplasts and can also photoacclimate. In Dinophysis spp., the contents of ciliate prey are sucked out, but only the chloroplasts are retained from the ingested prey. Some chloroplast house-keeping genes have been found in the nucleus of Dinophysis and some preliminary evidence suggests that Dinophysis may be capable for photoacclimation. Both genera have been claimed to take up inorganic nutrients, including NO3, indicating that processes beyond photosynthesis have been acquired. M. rubrum seems to depend upon prey species within the Teleaulax/Plagioselmis/Geminigera clade of marine cryptophytes. Up until now, Dinophysis species have only been maintained cultured on M. rubrum as food, but other ciliates may also be ingested. Dinophysis spp. and M. rubrum are obligate mixotrophs, depending upon both prey and light for sustained growth. However, while M. rubrum only needs to ingest 1–2% of its carbon demand per day to attain maximum growth, Dinophysis spp. need to obtain about half of their carbon demand from ingestion for maximum growth. Both Mesodinium and Dinophysis spp. can survive for months in the light without food. The potential role for modeling in exploring the complex balance of phototrophy and phago-heterotrophy, and its ecological implications for the mixotroph and their prey, is discussed.  相似文献   

7.
This is the first report of the propagation of the toxic dinoflagellate Dinophysis fortii Pavill. under laboratory conditions when fed on the marine ciliate Myrionecta rubra grown with the cryptophyte Teleaulax amphioxeia (W. Conrad) D. R. A. Hill. In contrast, reduced growth of D. fortii (max. of 3–4 divisions) and formation of small cells were observed in the absence of the ciliate or when provided with T. amphioxeia only as prey, showing that D. fortii cannot utilize T. amphioxeia as prey. In the TEM observation of D. fortii cells, which had fully fed on the ciliate prey, well‐developed chloroplasts (5–12 μm in length) were seen and three thylakoids were usually arranged in most of the chloroplasts observed, but chloroplasts having two thylakoids were sometimes confirmed. In cells starved for 4 weeks, decrease of chloroplast numbers and disappearance of large chloroplasts were observed, and only a few small chloroplasts (0.5–2 μm in length) remained in the marginal regions. In the observation of the sequestration process of the chloroplasts ingested from M. rubra by D. fortii, within 15 min after D. fortii captured M. rubra, incorporation of almost all of the chloroplasts was observed, while most of the other cell contents still remained in the M. rubra cell. After that, dispersion of the ingested chloroplasts toward the marginal regions was confirmed, suggesting that chloroplasts of M. rubra are ingested and dispersed in D. fortii cells in advance of the ingestion of the other cell contents to prevent them from being digested in food vacuoles. The ingested chloroplasts can also function as kleptoplastids.  相似文献   

8.
The ciliate genus Mesodinium contains species that rely to varying degrees on photosynthetic machinery stolen from cryptophyte algal prey. Prey specificity appears to scales inversely with this reliance: The predominantly phototrophic M. major/rubrum species complex exhibits high prey specificity, while the heterotrophic lineages M. pulex and pupula are generalists. Here, we test the hypothesis that the recently described mixotroph M. chamaeleon, which is phylogenetically intermediate between M. major/rubrum and M. pulex/pupula, exhibits intermediate prey preferences. Using a series of feeding and starvation experiments, we demonstrate that M. chamaeleon grazes and retains plastids at rates which often exceed those observed in M. rubrum, and retains plastids from at least five genera of cryptophyte algae. Despite this relative generality, M. chamaeleon exhibits distinct prey preferences, with higher plastid retention, mixotrophic growth rates and efficiencies, and starvation tolerance when offered Storeatula major, a cryptophyte that M. rubrum does not appear to ingest. These results suggest that niche partitioning between the two acquired phototrophs may be mediated by prey identity. M. chamaeleon appears to represent an intermediate step in the transition to strict reliance on acquired phototrophy, indicating that prey specificity may evolve alongside degree of phototrophy.  相似文献   

9.
The cryptophyte Teleaulax amphioxeia is a source of plastids for the ciliate Mesodinium rubrum and both organisms are members of the trophic chain of several species of Dinophysis. It is important to better understand the ecology of organisms at the first trophic levels before assessing the impact of principal factors of global change on Dinophysis spp. Therefore, combined effects of temperature, irradiance, and pH on growth rate, photosynthetic activity, and pigment content of a temperate strain of T. amphioxeia were studied using a full factorial design (central composite design 23*) in 17 individually controlled bioreactors. The derived model predicted an optimal growth rate of T. amphioxeia at a light intensity of 400 μmol photons · m−2 · s−1, more acidic pH (7.6) than the current average and a temperature of 17.6°C. An interaction between temperature and irradiance on growth was also found, while pH did not have any significant effect. Subsequently, to investigate potential impacts of prey quality and quantity on the physiology of the predator, M. rubrum was fed two separate prey: predator ratios with cultures of T. amphioxeia previously acclimated at two different light intensities (100 and 400 μmol photons · m−2 s−1). M. rubrum growth appeared to be significantly dependent on prey quantity while effect of prey quality was not observed. This multi-parametric study indicated a high potential for a significant increase of T. amphioxeia in future climate conditions but to what extent this would lead to increased occurrences of Mesodinium spp. and Dinophysis spp. should be further investigated.  相似文献   

10.
Prorocentrum minimum is a neritic dinoflagellate that forms seasonal blooms and red tides in estuarine ecosystems. While known to be mixotrophic, previous attempts to document feeding on algal prey have yielded low grazing rates. In this study, growth and ingestion rates of P. minimum were measured as a function of nitrogen (‐N) and phosphorous (‐P) starvation. A P. minimum isolate from Chesapeake Bay was found to ingest cryptophyte prey when in stationary phase and when starved of N or P. Prorocentrum minimum ingested two strains of Teleaulax amphioxeia at higher rates than six other cryptophyte species. In all cases ‐P treatments resulted in the highest grazing. Ingestion rates of ‐P cells on T. amphioxeia saturated at ~5 prey per predator per day, while ingestion by ‐N cells saturated at 1 prey per predator per day. In the presence of prey, ‐P treated cells reached a maximum mixotrophic growth rate (μmax) of 0.5 d?1, while ‐N cells had a μmax of 0.18 d?1. Calculations of ingested C, N, and P due to feeding on T. amphioxeia revealed that phagotrophy can be an important source of all three elements. While P. minimum is a proficient phototroph, inducible phagotrophy is an important nutritional source for this dinoflagellate.  相似文献   

11.
Recent research emphasis on the ecology of Pfiesteria spp. (Dinophyceae) has led to recognition of several morphologically similar heterotrophic dinoflagellates that often co-occur with Pfiesteria spp. in estuaries along the United States Atlantic coast. These include cryptoperidiniopsoid dinoflagellates, which resemble Pfiesteria spp. in having complex life cycles that include zoospores capable of kleptoplastidy. To examine and compare the role of kleptoplastidy in Cryptoperidiniopsis sp. and Pfiesteria piscicida, we tested the effects of irradiance on growth under prey-saturated (Storeatula major, Cryptophyceae) conditions. Growth of Cryptoperidiniopsis was strongly influenced by light intensity while no major effects were observed in P. piscicida. In Cryptoperidiniopsis, highest cell numbers and specific growth rates, but lowest specific cryptophyte consumption rates, were found at the highest light intensity tested (100 μmol photons m−2 s−1). A growth model was developed and used to estimate that the average half-life of chloroplasts ingested by Cryptoperidiniopsis decreased 3.4-fold from 12.6 h at high light to 3.7 h in the dark. These results show that light strongly enhances specific growth rate and growth efficiency of Cryptoperidiniopsis feeding on cryptophytes, and suggest that retained kleptochloroplasts may play a quantitatively significant role in carbon and energy metabolism of this organism. Differences in the effects of light between Cryptoperidiniopsis and P. piscicida may reflect different nutritional strategies, and allow these closely related dinoflagellates to occupy different niches and co-exist.  相似文献   

12.
13.
We first reported here that the harmful alga Cochlodinium polykrikoides, which had been previously known as an autotrophic dinoflagellate, was a mixotrophic species. We investigated the kinds of prey species and the effects of the prey concentration on the growth and ingestion rates of C. polykrikoides when feeding on an unidentified cryptophyte species (Equivalent Spherical Diameter, ESD = 5.6 microm). We also calculated grazing coefficients by combining field data on abundances of C. polykrikoides and co-occurring cryptophytes with laboratory data on ingestion rates obtained in the present study. Cocholdinium polykrikoides fed on prey cells by engulfing the prey through the sulcus. Among the phytoplankton prey offered, C. polykrikoides ingested small phytoplankton species that had ESD's < or = 11 microm (e.g. the prymnesiophyte Isochrysis galbana, an unidentified cryptophyte, the cryptophyte Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellate Amphidinium carterae). It did not feed on larger phytoplankton species that had ESD's > or = 12 microm (e.g. the dinoflagellates Heterocapsa triquetra, Prorocentrum minimum, Scrippsiella sp., Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum). Specific growth rates of C. polykrikoides on a cryptophyte increased with increasing mean prey concentration, with saturation at a mean prey concentration of approximately 270 ng C ml(-1) (i.e. 15,900 cells ml(-1)). The maximum specific growth rate (mixotrophic growth) of C. polykrikoides on a cryptophyte was 0.324 d(-1), under a 14:10 h light-dark cycle of 50 microE m(-2) s(-1), while its growth rate (phototrophic growth) under the same light conditions without added prey was 0.166 d(-1). Maximum ingestion and clearance rates of C. polykrikoides on a cryptophyte were 0.16 ng C grazer(-1)d(-1) (9.4 cells grazer(-1)d(-1)) and 0.33 microl grazer(-1)h(-1), respectively. Calculated grazing coefficients by C. polykrikoides on cryptophytes were 0.001-0.745 h(-1) (i.e. 0.1-53% of cryptophyte populations were removed by a C. polykrikoides population in 1 h). The results of the present study suggest that C. polykrikoides sometimes has a considerable grazing impact on populations of cryptophytes.  相似文献   

14.
Ciliates within the Mesodinium rubrum/Mesodinium major species complex harbor chloroplasts and other cell organelles from specific cryptophyte species. Mesodinium major was recently described, and new studies indicate that blooms of M. major are just as common as blooms of M. rubrum. Despite this, the physiology of M. major has never been studied and compared to M. rubrum. In this study, growth, food uptake, chlorophyll a and photosynthesis were measured at six different irradiances, when fed the cryptophyte, Teleaulax amphioxeia. The results show that the light compensation point for growth of Mmajor was significantly higher than for Mrubrum. Inorganic carbon uptake via photosynthesis contributed by far most of total carbon uptake at most irradiances, similar to Mrubrum. Mesodinium major cells contain ~four times as many chloroplast as M. rubrum leading to up to ~four times higher rates of photosynthesis. The responses of M. major to prey starvation and refeeding were also studied. Mesodinium major was well adapted to prey starvation, and 51 d without prey did not lead to mortality. Mesodinium major quickly recovered from prey starvation when refed, due to high ingestion rates of > 150 prey/predator/d.  相似文献   

15.
  1. Hosts are typically coinfected by multiple parasite species whose interactions might be synergetic or antagonistic, producing unpredictable physiological and pathological impacts on the host. This study shows the interaction between Plasmodium spp. and Leucocytozoon spp. in birds experimentally infected or not infected with Mycoplasma gallisepticum.
  2. In 1994, the bacterium Mycoplasma gallisepticum jumped from poultry to wild birds in which it caused a major epidemic in North America. Birds infected with Mgallisepticum show conjunctivitis as well as increased levels of corticosterone.
  3. Malaria and other haemosporidia are widespread in birds, and chronic infections become apparent with the detectable presence of the parasite in peripheral blood in response to elevated levels of natural or experimental corticosterone levels.
  4. Knowing the immunosuppressive effect of corticosterone on the avian immune system, we tested the hypothesis that chronic infections of Plasmodium spp. and Leucocytozoon spp. in house finches would respond to experimental inoculation with M. gallisepticum as corticosterone levels are known to increase following inoculation.
  5. Plasmodium spp. infection intensity increased within days of M. gallisepticum inoculation as shown both by the appearance of infected erythrocytes and by the increase in the number and the intensity of positive PCR tests.
  6. Leucocytozoon spp. infection intensity increased when Plasmodium spp. infection intensity increased, but not in response to M. gallisepticum inoculation. Leucocytozoon spp. and Plasmodium spp. seemed to compete in the host as shown by a negative correlation between the changes in their PCR score when both pathogens were present in the same individual.
  7. Host responses to coinfection with multiple pathogens measured by the hematocrit and white blood cell count depended on the haemosporidian community composition. Host investment in the leukocyte response was higher in the single‐haemosporidia‐infected groups when birds were infected with M. gallisepticum.
  8. A trade‐off was observed between the immune control of the chronic infection (Plasmodium spp./Leucocytozoon spp.) and the immune response to the novel bacterial infection (M. gallisepticum).
  相似文献   

16.
According to apparent competition theory, the co‐occurrence of two species that share the same predators appears to affect each other's population growth and abundance. However, due to habitat loss and over‐hunting, top predators are being made rare worldwide. Considering that apparent competitors share similar resources, we would expect the absence of top predators to reflect in changes on prey realized trophic niches. To test our hypothesis, we developed a model to predict the abundance ratio of apparent competitor species based on changes in their realized trophic niches. We tested our model against field data on the Neotropical marsupials Didelphis aurita and Metachirus nudicaudatus. Our results revealed that D. aurita and M. nudicaudatus are two species under apparent competition and their realized trophic niche and diet overlap change according to the presence of top predators. The model was able to predict the actual relative abundances of D. aurita and M. nudicaudatus in the three empirical studies analyzed. Our study presents quantitative support to the apparent competition theory; however, the model's applications to other groups still need to be verified. Additionally, our study shows that the lack of top predators has consequences on the realized trophic niche of their prey, and therefore, we reinforce that conservation plans need to focus on the effects of top predator loss on ecosystems.  相似文献   

17.
18.
Laboratory studies were conducted to determine the consumption rates of two native predators found attacking the exotic invasive stink bug Bagrada hilaris (Burmeister) (Hempitera: Pentatomidae) in field plots in New Mexico, USA. Individual field‐collected adults of the spined soldier bug, Podisus maculiventris (Say) (Hempitera: Pentatomidae) and the soft‐winged flower beetle, Collops vittatus (Say) (Coleoptera: Melyridae), were provided daily with fixed numbers of different life stages of B. hilaris under controlled conditions. Consumption rates were recorded daily for ten consecutive days for a total of 20 adult Pmaculiventris and 20 adult C. vittatus per prey life stage. For Pmaculiventris, predation rates were obtained in relation to adult, third and fifth instar prey, and for C. vittatus for first, second and third instar prey. On average, predation on third and fifth instar B. hilaris nymphs by Pmaculiventris was 0.6 ± 0.1 and 0.9 ± 0.1 per day respectively. Predation rates on adults were slightly higher (1.3 ± 0.1 per day), with female prey being consumed at a significantly higher rate than male prey when three mating pairs of B. hilaris were provided per day (0.8 ± 0.1 females per day vs. 0.5 ± 0.1 males per day). Collops vittatus adults provisioned daily with 20 first instar B. hilaris nymphs killed a mean total of 4.7 ± 0.4 and 9.3 ± 0.6 prey each day (for male and female beetles respectively), with only approximately half that number of prey being fully consumed. Partial consumption of prey by this species was also observed with second and third instar nymphs, but to a lesser degree. Female beetles consumed significantly more prey than did male beetles when fed first and third instar B. hilaris, but not when given second instar prey.  相似文献   

19.
20.
The marine photosynthetic dinoflagellates Dinophysis Ehrenb. species are obligate mixotrophs that require both light and the ciliate prey Myrionecta rubra (= Mesodinium rubrum) for long‐term survival. Despite rapid progress on the study of Dinophysis using laboratory cultures, however, whether it has its own permanent plastids or kleptoplastids (i.e., stolen plastids from its ciliate prey) is not fully resolved. Here, we addressed this issue using established cultures of D. caudata Saville‐Kent strain DC‐LOHABE01 and cross‐feeding/starvation experiments encompassing the prey Mrubra strain MR‐MAL01 cultures grown on two different cryptophytes (strains CR‐MAL01 and CR‐MAL11). To follow the fate of prey plastids, psbA gene as a tracer was amplified from individually isolated D. caudata cells, and the PCR products were digested with a restriction enzyme, SfaNI. The RFLP pattern of the PCR products digested by SfaNI revealed that Dcaudata continued to keep CR‐MAL01–type plastids, while it lost CR‐MAL11–type plastids with increasing starvation time. Our results suggest that Dinophysis treats in different ways plastids taken up from different cryptophytes via its ciliate prey Mrubra. Alternatively, Dcaudata may already have its own CR‐MAL01–type permanent plastid, with two types of plastids (CR‐MAL01 and CR‐MAL11) obtained from Mrubra being lost within 1 month. This result highlights the need to identify more accurately the origin of plastids in newly isolated photosynthetic Dinophysis species to resolve the issue of plastid permanence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号