首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres for the Atlantic Chytriodinium sp. The first complete small subunit ribosomal DNA (SSU rDNA) of the Atlantic Chytriodinium sp. suggests that the specimens belong to an undescribed species. This is the first evidence of the split of the Gymnodinium clade: one for the parasitic forms of Chytriodiniaceae (Chytriodinium, Dissodinium), and other clade for the free‐living species.  相似文献   

2.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

3.
4.
Peniculistoma mytili and Mytilophilus pacificae are placed in the pleuronematid scuticociliate family Peniculistomatidae based on morphology and ecological preference for the mantle cavity of mytiloid bivalves. We tested this placement with sequences of the small subunit rRNA (SSUrRNA) and cytochrome c oxidase subunit 1 (cox1) genes. These species are very closely related sister taxa with no distinct genetic difference in the SSUrRNA sequence but about 21% genetic difference for cox1, supporting their placement together but separation as distinct taxa. Using infection frequencies, M. pacificae, like its sister species P. mytili, does not interact with Ancistrum spp., co‐inhabitants of the mantle cavity. On the basis of these ecological similarities, the fossil record of host mussels, and features of morphology and stomatogenesis of these two ciliates, we argue that M. pacificae derived from a Peniculistoma‐like ancestor after divergence of the two host mussels. Our phylogenetic analyses of pleuronematid ciliates includes the SSUrRNA gene sequence of Sulcigera comosa, a Histiobalantium‐like ciliate from Lake Baikal. We conclude: (i) that the pleuronematids are a monophyletic group; (ii) that the genus Pleuronema is paraphyletic; and (iii) that S. comosa is a Histiobalantium species. We transfer S. comosa to Histiobalantium and propose a new combination Histiobalantium comosa n. comb.  相似文献   

5.
Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well‐supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae.  相似文献   

6.
A complex wide‐range study on the haemoproteid parasites of chelonians was carried out for the first time. Altogether, 811 samples from four tortoise species from an extensive area between western Morocco and eastern Afghanistan and between Romania and southern Syria were studied by a combination of microscopic and molecular‐genetic methods. Altogether 160 Haemoproteus‐positive samples were gathered in the area between central Anatolia and eastern Afghanistan. According to variability in the cytochrome b gene, two monophyletic evolutionary lineages were distinguished; by means of microscopic analysis it was revealed that they corresponded to two previously described species—Haemoproteus anatolicum and Haemoproteus caucasica. Their distribution areas overlap only in a narrow strip along the Zagros Mts. range in Iran. This fact suggests the involvement of two different vector species with separated distribution. Nevertheless, no vectors were confirmed. According to phylogenetic analyses, H. caucasica represented a sister group to H. anatolicum, and both of them were most closely related to H. pacayae and H. peltocephali, described from South American river turtles. Four unique haplotypes were revealed in the population of H. caucasica, compared with seven haplotypes in H. anatolicum. Furthermore, H. caucasica was detected in two tortoise species, Testudo graeca and Testudo horsfieldii, providing evidence that Haemoproteus is not strictly host‐specific to the tortoise host species.  相似文献   

7.
8.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

9.
The marine dinoflagellate Erythropsidinium possesses an ocelloid, the most elaborate photoreceptor organelle known in a unicellular organism, and a piston, a fast contractile appendage unknown in any other organism. The ocelloid is able to rotate, often before the cell swims. The ocelloid contains lenses that function to concentrate light. The flagellar propulsion is atrophied, and the piston is responsible for locomotion through successive extensions and contractions. During the “locomotion mode”, the contraction is ~4 times faster than the extension. The piston attained up to 50 mm · s?1 and the cell jumps backwards at ?4 mm · s?1, while during the piston extension the cell moves forwards. The net speed of ~?1 mm · s?1 is faster than other dinoflagellates. The piston usually moved in the “static mode” without significant cell swimming. This study suggests that the piston is also a tactile organelle that scans the surrounding waters for prey. Erythropsidinium feeds on copepod eggs by engulfing. The end of the piston possesses a “suction cup” able to attach the prey and place it into the posterior cavity for engulfing. The cylindrical shape of Erythropsidinium, and the anterior position of the ocelloid and nucleus, are morphological adaptations that leave space for the large vacuole. Observations are provided on morphological development during cell division. Most of the described species of Erythropsidinium apparently correspond to distinct life stages of known species, and the genus Greuetodinium (=Leucopsis) corresponds to an earlier division stage.  相似文献   

10.
Allelopathic interactions among phytoplankton are well documented. The potency of allelopathic species and responses of target species to allelochemicals are quite variable, however, limiting full understanding of the role these interactions may play in nature. One trait that may influence the sensitivity of an individual to allelochemicals is cell size. The few studies that have examined relationships between cell size and susceptibility to allelochemicals have compared different species and thus could not distinguish between the role of size and species‐specific physiological differences. Culturing an actively sexually reproducing diatom allowed us to focus on the influence of target cell size within a single species. We studied growth and nutrient acquisition by the chain‐forming Thalassiosira cf. gravida Clever in the presence and absence of allelochemicals released by Alexandrium fundyense Balech as a function of Tcf. gravida cell size. Upon exposure to filtrate of A. fundyense, Tcf. gravida cultures “bleached” and both growth and nutrient utilization ceased for up to 4 d. The magnitude of the effect was dependent on filtrate concentration and Tcf. gravida cell surface area:volume ratio. The greatest inhibition was observed on the smallest cells, while Tcf. gravida cultures that had undergone cell enlargement via sexual reproduction were least sensitive to A. fundyense filtrate. These results demonstrate that competitor cell size, independent from taxonomy, may influence the outcome of allelopathic interactions. The findings presented here suggest a potential ecological impact of diatom cell size reduction and sexual reproduction that has not yet been described and that may be important in determining diatom survival and success.  相似文献   

11.
12.
Ulva Linnaeus (Ulvophyceae, Ulvales) is a genus of green algae widespread in different aquatic environments. Members of this genus show a very simple morphology and a certain degree of phenotypic plasticity, heavily influenced by environmental conditions, making difficult the delineation of species by morphological features alone. Most studies dealing with Ulva biodiversity in Mediterranean waters have been based only on morphological characters and a modern taxonomic revision of this genus in the Mediterranean is not available. We report here the results of an investigation on the diversity of Ulva in the North Adriatic Sea based on molecular analyses. Collections from three areas, two of which subject to intense shipping traffic, were examined, as well as historical collections of Ulva stored in the Herbarium Patavinum of the University of Padova, Italy. Molecular analyses based on partial sequences of the rbcL and tufA genes revealed the presence of six different species, often with overlapping morphologies: U. californica Wille, U. flexuosa Wulfen, U. rigida C. Agardh, U. compressa Linnaeus, U. pertusa Kjellman, and one probable new taxon. U. californica is a new record for the Mediterranean and U. pertusa is a new record for the Adriatic. Partial sequences obtained from historical collections show that most of the old specimens are referable to U. rigida. No specimens referable to the two alien species were found among the old herbarium specimens. The results indicate that the number of introduced seaweed species and their impact on Mediterranean communities have been underestimated, due to the difficulties in species identification of morphologically simple taxa as Ulva.  相似文献   

13.
Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL‐F and rpl32‐trnL(UAG) sequences and nine nuclear co‐dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi‐perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi‐perennial types. The second group is composed of semi‐perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi‐perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them.  相似文献   

14.
Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark‐spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter‐ and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless‐modified Echinosteliales. We discuss possible evolutionary pathways in dark‐spored Myxomycetes and propose a taxonomic update.  相似文献   

15.
16.
The opportunist free‐living protists such as Acanthamoeba spp. and Balamuthia mandrillaris have become a serious threat to human life. As most available drugs target functional aspects of pathogens, the ability of free‐living protists to transform into metabolically inactive cyst forms presents a challenge in treatment. It is hoped, that the development of broad spectrum antiprotist agents acting against multiple cyst‐forming protists to provide target‐directed inhibition will offer a viable drug strategy in the treatment of these rare infections. Here, we present a comprehensive report on upcoming drug targets, with emphasis on cyst wall biosynthesis along with the related biochemistry of encystment pathways, as we strive to bring ourselves a step closer to being able to combat these deadly diseases.  相似文献   

17.
The external morphology and internal cell fine structure of a new species of Tovelliaceae, Tovellia rubescens n. sp., is described. Phylogenetic analyses based on partial LSU rDNA sequences place the new species in a clade containing Tovellia species that accumulate red pigments and identify T. aveirensis as its closest known relative. Cells of T. rubescens n. sp. were mostly round and had the cingulum located near the middle, with its ends displaced about one cingular width. Small numbers of distinctly flat cells appeared in culture batches; their significance could not be determined. Cells of the new species in culture batches progressively changed from a yellowish‐green, mainly due to chloroplast colour, to a reddish‐brown colour that appeared associated with lipid bodies. The switch to a reddish colour happened earlier in batches grown in medium lacking sources of N or P. Pigment analyses by HPLC‐MS/MS revealed the presence of astaxanthin and astaxanthin‐related metabolites in the new species, but also in T. aveirensis, in which a reddish colour was never observed. The chloroplast arrangement of T. rubescens n. sp. resembled that of T. aveirensis, with lobes radiating from a central pyrenoid complex. The flagellar apparatus and pusular system fell within the general features described from other Tovelliaceae. A row of microtubules interpretable as a microtubular strand of the peduncle was present. Spiny resting cysts with red contents and an ITS sequence identical to that of cultured material of the new species were found in the original locality.  相似文献   

18.
Molecular genetics and symbiont diagnostics have revolutionized our understanding of insect species diversity, and the transformative effects of bacterial symbionts on host life history. Encarsia inaron is a parasitoid wasp that has been shown to harbour two bacterial endosymbionts, Wolbachia and Cardinium. Known then as E. partenopea, it was introduced to the USA in the late 1980s from populations collected in Italy and Israel for the biological control of an ornamental tree pest, the ash whitefly, Siphoninus phillyreae. We studied natural populations from sites in the USA, the Mediterranean and the Middle East as well as from a Cardinium‐infected laboratory culture established from Italy, with the aims of characterizing these populations genetically, testing reproductive isolation, determining symbiont infection status in their native and introduced range, and determining symbiont role. The results showed that the two Encarsia populations introduced to the USA are genetically distinct, reproductively isolated, have different symbionts and different host–symbiont interactions, and can be considered different biological species. One (‘E. inaron’) is doubly infected by Wolbachia and Cardinium, while only Cardinium is present in the other (‘E. partenopea’). The Cardinium strains in the two species are distinct, although closely related, and crossing tests indicate that the Cardinium infecting ‘E. partenopea’ induces cytoplasmic incompatibility. The frequency of symbiont infection found in the native and introduced range of these wasps was similar, unlike the pattern seen in some other systems. These results also lead to a retelling of a successful biological control story, with several more characters than had been initially described.  相似文献   

19.
Research pertaining to the two closely‐related microsporidian genera Nosema and Vairimorpha is hindered by inconsistencies in species differentiation within and between the two clades. One proposal to better delimit these genera is to restructure the Nosema around a “True Nosema” clade, consisting of species that share a characteristic reversed ribosomal DNA operon arrangement and small subunit (SSU) ribosomal DNA sequences similar to that of the Nosema type species, N. bombycis. Using this framework, we assess two distinct microsporidia recovered from the forest insect Bruce spanworm (Operophtera bruceata) by sequencing their SSU and internal transcribed spacer regions. Phylogenetic analyses place one of our isolates within the proposed True Nosema clade close to N. furnacalis and place the other in the broader Nosema/Vairimorpha clade close to N. thomsoni. We found that 25% of Bruce spanworm cadavers collected over the four‐year study period were infected with microsporidia, but no infections were detected in cadavers of the Bruce spanworm's invasive congener, the winter moth (O. brumata), collected over the same period. We comment on these findings as they relate to the population dynamics of the Bruce spanworm‐winter moth system in this region, and more broadly, on the value of ribosomal DNA operon arrangement in Nosema systematics.  相似文献   

20.
Evolutionary relationships of taxa within the ciliate subclass Haptoria are poorly understood. In this study, we broaden the taxon sampling by adding 14 small subunit ribosomal RNA gene sequences, 13 large subunit ribosomal RNA gene sequences and 13 ITS1‐5.8S‐ITS2 gene sequences of haptorians. This includes the first molecular data from two genera, Pseudotrachelocerca Song, 1990, and Foissnerides Song & Wilbert, 1989. Phylogenies inferred from the three individual genes and concatenated data sets show that: (i) the subclass Haptoria could be a multiphyletic complex with about up to four main clades while “interrupted” by some intermingled with the related subclasses Rhynchostomatia, Trichostomatia and some incertae sedis; (ii) the genus Pseudotrachelocerca Song, 1990, is clearly separated from Litostomatea and clusters within an assemblage comprising the classes Prostomatea, Colpodea and Plagiopylea; (iii) both morphological evidence and molecular evidence indicate that the genus Foissnerides should be transferred from family Trachelophyllidae to Pseudoholophryidae; (iv) the validity of the order Helicoprorodontida Grain, 1994, and its monophyly is strongly supported; (5) the family Chaeneidae does not belong to the order Lacrymarida but represents a distinct clade in the subclass Haptoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号