首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to assessing the impacts of CO2 doubling on environment and society, more consideration is needed to estimate extreme events or surprises. This is particularly important at the intersection of disciplines like climate and ecology because the potential for large discontinuities is high given all the possible climate/biota interactions. The vast disparities in scales encountered by those working in traditional ecology (typically 20 m) and climatology (typically 200 km) make diagnoses of such interactions difficult, but these can be addressed by an emerging research paradigm we call strategic cyclical scaling (SCS). The need to anticipate outlier events and assign them subjective probabilities suggests emphasis on interdisciplinary research associations. The desire to reduce societal vulnerability to such events suggests the need to build adaptive management and diverse economic activities into social organizations. The effectiveness of adaptation responses to anticipated climatic changes is complicated when consideration of transient changes, regional disturbances, large unforseeable natural fluctuations and surprises are considered. Slowing down the rate of disturbances and decreasing vulnerability are advocated as the most prudent responses to the prospect of human-induced climatic changes.  相似文献   

2.
The effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.  相似文献   

3.
4.
New models are required to predict the impacts of future climate change on biodiversity. A move must be made away from individual models of single species toward approaches with synergistically interacting species. The focus should be on indirect effects due to biotic interactions. Here we propose a new parsimonious approach to simulate direct and indirect effects of global warming on plant communities. The methodology consists of five steps: a) field survey of species abundances, b) quantitative assessment of species co-occurrences, c) assignment of a theorised effect of increased temperature on each species, d) creation of a community model to project community dynamics, and e) exploration of the potential range of temperature change effects on plant communities.We explored the possible climate-driven dynamics in an alpine vegetation community and gained insights into the role of biotic interactions as determinants of plant species response to climate change at local scale. The study area was the uppermost portion of Alpe delle Tre Potenze (Northern Apennines, Italy) from 1500 m up to the summit at 1940 m.Our work shows that: 1) unexpected climate-driven dynamics can emerge, 2) interactive communities with indirect effects among species can overcome direct effects induced by global warming; 3) if just one or few species react to global warming the new community configuration could be unexpected and counter-intuitive; 4) timing of species reactions to global warming is an important driver of community dynamics; 5) using simulation models with a limited amount of data in input, it is possible to explore the full range of potential changes in plant communities induced by climate warming.  相似文献   

5.
Through their grazing activities limpets have an important role in controlling macroalgal abundance and as a result the structure and dynamics of rocky shore assemblages. Using two congeneric limpet species, with different biogeographic distributions, and whose ranges are expected to alter with climatic warming, we separated the magnitude of their grazing activity over time and the subsequent consequence for macroalgal growth.The northern/boreal limpet, Patella vulgata (L.), consistently grazed more than the southern/lusitanian limpet, P. depressa (Pennant), particularly during spring and summer when P. depressa was reproductively active. Individuals of Fucus vesiculosus (L.) that settled during this time were able to grow to a size where they escaped the grazing activities of P. depressa, resulting in mature F. vesiculosus being present in all P. depressa treatments. In contrast, P. vulgata, which was not reproductively active during this period, exhibited no reduction in its grazing activity and prevented macroalgae from growing in experimental treatments. It therefore appears that P. vulgata has a stronger role, than P. depressa, in controlling macroalgal abundance on shores of southwest Britain.We present a conceptual model highlighting the direct and indirect interactions between these two limpet species and F. vesiculosis. If as predicted, under current warming scenarios, P. depressa becomes the dominant limpet on shores of southwest Britain there will be subsequent changes in rocky shore community structure and ecosystem functioning. Our research emphasises that even closely related species with similar ecological niches can exhibit different behaviours that fundamentally alter their biological interactions with other organisms leading to idiosyncratic responses to predicted changes in climate.  相似文献   

6.
Forested catchments provide critically important water resources. Due to dramatic global forest change over the past decades, the importance of including forest or vegetation change in the assessment of water resources under climate change has been highly recognized by Intergovernmental Panel on Climate Change (IPCC); however, this importance has not yet been examined quantitatively across the globe. Here, we used four remote sensing‐based indices to represent changes in vegetation cover in forest‐dominated regions, and then applied them to widely used models: the Fuh model and the Choudhury‐Yang model to assess relative contributions of vegetation and climate change to annual runoff variations from 2000 to 2011 in forested landscape (forest coverage >30%) across the globe. Our simulations show that the global average variation in annual runoff due to change in vegetation cover is 30.7% ± 22.5% with the rest attributed to climate change. Large annual runoff variation in response to vegetation change is found in tropical and boreal forests due to greater forest losses. Our simulations also demonstrate both offsetting and additive effects of vegetation cover and climate in determining water resource change. We conclude that vegetation cover change must be included in any global models for assessing global water resource change under climate change in forest‐dominant areas.  相似文献   

7.
  1. Freshwater fishes are now facing unprecedented environmental changes across their northern ranges, especially due to rapid warming occurring at higher latitudes. However, empirical research that examines co-occurring environmental effects on northern fish communities remains limited.
  2. We used fish community data from 1587 Alaskan stream sites to examine the potential combined and interacting effects of climate change, current weather, habitat, land use, and fire on two community-level metrics (species richness, relative abundance), and on the distributions of three Alaskan fish species.
  3. Our models were 71–76% accurate in predicting the distribution of Alaskan stream fishes using a combination of climate and habitat variables. In contrast to other freshwater ecosystems that are most threatened by land use pressures, we did not detect any evidence for the potential stress of anthropogenic land use or fire on stream fishes.
  4. Warming temperatures increased overall community richness and abundance but produced differing responses at the species level. Juvenile salmon presence was positively associated with several climate variables including warmer spring and autumn temperatures and wetter summers. In comparison, warmer seasonal temperatures contributed to declines for northern-adapted species such as Arctic grayling and Dolly Varden.
  5. This study highlights the overarching role of current and changing climate in regulating northern stream fish biodiversity. Although many fish species may benefit from climate change across their northern ranges, localised declines are likely to occur and may prove detrimental for communities with limited fishing portfolios. Climate change adaptation and mitigation strategies customised for rapidly changing northern ecosystems will play an essential role in preserving ecologically unique northern species.
  相似文献   

8.
Understanding long‐term human‐environment interactions requires historical reconstruction of past land‐cover changes. The objective of this study is to reconstruct past land‐use and land‐cover changes in a rural municipality of the Belgian Ardennes over the last 250 years. Two approaches were compared. The first approach produced backward projections based on a mechanistic model which computes the demand for different land uses under the assumption of an equilibrium between the production and consumption of resources. The second approach involved using a series of historical maps to extract directly land‐use areas. A stochastic Markov chain model was also used to project backward missing land‐cover data in the time series. The consistency between the results obtained with the different approaches suggests that land‐use area can be successfully reconstructed on the basis of the mechanistic model, under conditions of a subsistence farming system and a closed economy. Land‐use/cover changes in the Belgian Ardennes from 1775 to 1929 were more driven by the interventionist measures of the Belgian government and by technological progress than by the ‘pressure’ of the growing population and livestock. Thanks to agricultural intensification, a decrease in land under human use was supporting increasing human and livestock populations from 1846 to 1880. Reforestation has accelerated since the mid‐19th century. This case study illustrates the highly dynamic and non‐linear character of land‐use change trajectories over long time periods and their strong interactions with the history of societies.  相似文献   

9.
Climate change has led to widespread shifts in the timing of key life history events between interacting species (phenological asynchrony) with hypothesized cascading negative fitness impacts on one or more of the interacting species—often termed ‘mismatch’. Yet, predicting the types of systems prone to mismatch remains a major hurdle. Recent reviews have argued that many studies do not provide strong evidence of the underlying match-mismatch hypothesis, but none have quantitatively analysed support for it. Here, we test the hypothesis by estimating the prevalence of mismatch across antagonistic trophic interactions in terrestrial systems and then examine whether studies that meet the assumptions of the hypothesis are more likely to find a mismatch. Despite a large range of synchrony to asynchrony, we did not find general support for the hypothesis. Our results thus question the general applicability of this hypothesis in terrestrial systems, but they also suggest specific types of data missing to robustly refute it. We highlight the critical need to define resource seasonality and the window of ‘match’ for the most rigorous tests of the hypothesis. Such efforts are necessary if we want to predict systems where mismatches are likely to occur.  相似文献   

10.
11.
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.  相似文献   

12.
13.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   

14.
Aims: The direct effects of atmospheric and climatic change factors—atmospheric[CO2], air temperature and changes in precipitation—canshape plant community composition and alter ecosystem function.It is essential to understand how these factors interact tomake better predictions about how ecosystems may respond tochange. We investigated the direct and interactive effects of[CO2], warming and altered soil moisture in open-top chambers(OTCs) enclosing a constructed old-field community to test howthese factors shape plant communities. Materials and methods: The experimental facility in Oak Ridge, TN, USA, made use of4-m diameter OTCs and rain shelters to manipulate [CO2] (ambient,ambient + 300 ppm), air temperature (ambient, ambient + 3.5°C)and soil moisture (wet, dry). The plant communities within thechambers comprised seven common old-field species, includinggrasses, forbs and legumes. We tracked foliar cover for eachspecies and calculated community richness, evenness and diversityfrom 2003 to 2005. Important findings: This work resulted in three main findings: (1) warming had species-specificeffects on foliar cover that varied through time and were alteredby soil moisture treatments; (2) [CO2] had little effect onindividual species or the community; (3) diversity, evennessand richness were influenced most by soil moisture, primarilyreflecting the response of one dominant species. We concludethat individualistic species responses to atmospheric and climaticchange can alter community composition and that plant populationsand communities should be considered as part of analyses ofterrestrial ecosystem response to climate change. However, predictionof plant community responses may be difficult given interactionsbetween factors and changes in response through time.  相似文献   

15.
The objectives of this study were to test potential effects of solar ultraviolet-B (UV-B) radiation on (i) foliage nutritional quality and foliage decomposition rates of six plant species of this fen ecosystem (Nothofagus antarctica, Carex curta, C. decidua and C. magellanica; Acaena magellanica and Gunnera magellanica) and (ii) feeding preferences for these plant species of the slug Deroceras reticulatum prevalent in this ecosystem. In a mixed-diet selection slugs were offered leaves of the six species that had been grown for three years in experimental field plots under either near-ambient or reduced solar ultraviolet-B (UV-B) radiation. The chosen characteristics of leaf quality (nitrogen concentration, carbon:nitrogen ratio, specific leaf area) and leaf decomposition rates of the six species varied significantly among species but were not affected by the UV-B treatments. However, there were UV-B treatment effects on slug feeding preference for two plant species. For the tree species, Nothofagus, slugs had consumed only one-third as much foliage grown under near-ambient UV-B radiation as of foliage grown under reduced UV-B by the end of the feeding experiment. In contrast, leaves of the sedge C. decidua that had been grown under near-ambient UV-B were consumed twice as much as leaves grown under reduced UV-B radiation. Consumption of foliage for the other four species was similar for the two UV-B treatments. Additionally, diet selection of the slugs was also significantly affected by prior UV-B conditions under which foliage had been grown. Nothofagus leaves were consumed proportionately less and C. decidua proportionately more if the foliage had been grown under near-ambient UV-B radiation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
1. The ranges of many species have expanded in cool regions but contracted at warm margins in response to recent climate warming, but the mechanisms behind such changes remain unclear. Particular debate concerns the roles of direct climatic limitation vs. the effects of interacting species in explaining the location of low latitude or low elevation range margins. 2. The mountains of the Sierra de Guadarrama (central Spain) include both cool and warm range margins for the black-veined white butterfly, Aporia crataegi, which has disappeared from low elevations since the 1970s without colonizing the highest elevations. 3. We found that the current upper elevation limit to A. crataegi's distribution coincided closely with that of its host plants, but that the species was absent from elevations below 900 m, even where host plants were present. The density of A. crataegi per host plant increased with elevation, but overall abundance of the species declined at high elevations where host plants were rare. 4. The flight period of A. crataegi was later at higher elevations, meaning that butterflies in higher populations flew at hotter times of year; nevertheless, daytime temperatures for the month of peak flight decreased by 6.2 degrees C per 1 km increase in elevation. 5. At higher elevations A. crataegi eggs were laid on the south side of host plants (expected to correspond to hotter microclimates), whereas at lower sites the (cooler) north side of plants was selected. Field transplant experiments showed that egg survival increased with elevation. 6. Climatic limitation is the most likely explanation for the low elevation range margin of A. crataegi, whereas the absence of host plants from high elevations sets the upper limit. This contrasts with the frequent assumption that biotic interactions typically determine warm range margins, and thermal limitation cool margins. 7. Studies that have modelled distribution changes in response to climate change may have underestimated declines for many specialist species, because range contractions will be exacerbated by mismatch between the future distribution of suitable climate space and the availability of resources such as host plants.  相似文献   

17.
Temporal changes in allele frequencies were studied in host-associated populations of the small ermine moth Yponomeuta padellus. At one site, populations from three host plants (Sorbus aucuparia, Amelanchier larnarckii , and Crataegus spp.) were sampled annually during a four-year-period and analysed with 20 polymorphic allozyme markers. At two other sites, allele frequencies at 5- 6 enzyme loci of Y. padellus populations from two different host plants were also tested for consistency over a 13-year-pcriod. Significant allele frequency changes occurred in the short-term analysis, whereas allele frequencies remained relatively stable through time in the long-term analyses. Furthermore, allele frequencies of Y. padellus populations from Crataegus spp. were relatively stable compared to the other host populations. The role of the agents responsible for the observed patterns is discussed.  相似文献   

18.
19.
20.
Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem‐level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow‐lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号