首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Autophagy controls insect development and can be targeted for pest control in agriculture. In the present study, starvation‐induced autophagy is investigated in the insect species Spodoptera frugiperda. Bioinformatics analysis and a search of the EST database (http://bioweb.ensam.inra.fr/spodobase) identifies a putative ATG8 gene of S. frugiperda. To generate a biomarker of autophagosome, the DNA sequence encoding the open reading frame of this gene is amplified and cloned into a pIEX‐4‐mCherry‐EGFP‐SfATG8 recombinant vector. Sf9 cells are then transfected with this expression vector and starved in phosphate‐buffered saline solution for 4 h to induce autophagy, which is examined by LysoTracker staining (Life Technologies, Grand Island, New York), western blotting and fluorescence microscopy. The results obtained show that starvation stimulates lipidation of SfATG8‐PE and the formation of autophagosomes, providing a foundation for further research with respect to autophagy in insects.  相似文献   

3.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

4.
We exploited the amenability of the fungus Aspergillus nidulans to genetics and live-cell microscopy to investigate autophagy. Upon nitrogen starvation, GFP-Atg8-containing pre-autophagosomal puncta give rise to cup-shaped phagophores and circular (0.9-μm diameter) autophagosomes that disappear in the vicinity of the vacuoles after their shape becomes irregular and their GFP-Atg8 fluorescence decays. This ‘autophagosome cycle’ gives rise to characteristic cone-shaped traces in kymographs. Autophagy does not require endosome maturation or ESCRTs, as autophagosomes fuse with vacuoles directly in a RabS (homolog of Saccharomyces cerevisiae Ypt7 and mammalian RAB7; written hereafter as RabSRAB7)-HOPS-(homotypic fusion and vacuole protein sorting complex)-dependent manner. However, by removing RabSRAB7 or Vps41 (a component of the HOPS complex), we show that autophagosomes may still fuse, albeit inefficiently, with the endovacuolar system in a process almost certainly mediated by RabARAB5/RabBRAB5 (yeast Vps21 homologs)-CORVET (class C core vacuole/endosome tethering complex), because acute inactivation of HbrA/Vps33, a key component of HOPS and CORVET, completely precludes access of GFP-Atg8 to vacuoles without affecting autophagosome biogenesis. Using a FYVE2-GFP probe and endosomal PtdIns3P-depleted cells, we imaged PtdIns3P on autophagic membranes. PtdIns3P present on autophagosomes decays at late stages of the cycle, preceding fusion with the vacuole. Autophagy does not require Golgi traffic, but it is crucially dependent on RabORAB1. TRAPPIII-specific factor AN7311 (yeast Trs85) localizes to the phagophore assembly site (PAS) and RabORAB1 localizes to phagophores and autophagosomes. The Golgi and autophagy roles of RabORAB1 are dissociable by mutation: rabOA136D hyphae show relatively normal secretion at 28°C but are completely blocked in autophagy. This finding and the lack of Golgi traffic involvement pointed to the ER as one potential source of membranes for autophagy. In agreement, autophagosomes form in close association with ring-shaped omegasome-like ER structures resembling those described in mammalian cells.  相似文献   

5.
《Autophagy》2013,9(2):139-141
Autophagy has recently emerged as potential drug target for prevention of neurodegeneration. However, the details of the autophagy process and regulation in the central nervous system (CNS) are unclear. By using a neuronal excitotoxicity model in mice, we engineered expression of a fluorescent autophagic marker and systematically investigated autophagic activity under neurodegenerative conditions. The study reveals an early response of Purkinje cells to excitotoxic insult by induction of autophagy in axon terminals, and that axonal autophagy is particularly robust in comparison to the cell body and dendrites. The accessibility of axons to rapid autophagy induction suggests local biogenesis of autophagosomes in axons. Characterization of functional interaction between autophagosome protein LC3 and microtubule-associated protein 1B (MAP1B), which is involved in axonal growth, injury and transport provides evidence for neuron- or axon-specific regulation of autophagosomes. Furthermore, we propose that p62/SQSTM1, a putative autophagic substrate, can serve as a marker for evaluating impairment of autophagic degradation, which helps resolve the controversy over autophagy levels under various pathological conditions. Future study of the relationship between autophagy and axonal function (e.g., transport) will provide insight into the mechanism underlying axonopathy which is directly linked to neurodegeneration.

Addendum to:

Induction of Autophagy in Axonal Dystrophy and Degeneration

Q.J. Wang, Y. Ding, Y. Zhong, D.S. Kohtz, N. Mizushima, I.M. Cristea, M.P. Rout, B.T. Chait, N. Heintz and Z. Yue

J Neurosci 2006; 26:8057-68  相似文献   

6.
《Autophagy》2013,9(4):360-362
In previous studies, using a membrane-permeable protease inhibitor, E-64d, we showed that autophagy occurs constitutively in the root cells of barley and Arabidopsis. In the present study, a fusion protein composed of the autophagy-related protein AtAtg8 and green fluorescent protein (GFP) was expressed in Arabidopsis to visualize autophagosomes. We first confirmed the presence of autophagosomes with GFP fluorescence in the root cells of seedlings grown on a nutrient-sufficient medium. The number of autophagosomes changed as the root cells grew and differentiated. In cells near the apical meristem, autophagosomes were scarcely found. However, a small but significant number of autophagosomes existed in the elongation zone. More autophagosomes were found in the differentiation zone where cell growth ceases but the cells start to form root hair. In addition, we confirmed that autophagy is activated under starvation conditions in Arabidopsis root cells. When the root tips were cultured in a sucrose-free medium, the number of autophagosomes increased in the elongation and differentiation zones, and a significant number of autophagosomes appeared in cells near the apical meristem. The results suggest that autophagy in plant root cells is involved not only in nutrient recycling under nutrient-limiting conditions but also in cell growth and root hair formation.

Addendum to:

AtATG Genes, Homologs of Yeast Autophagy Genes, are Involved in Constitutive Autophagy in Arabidopsis Root Tip Cells

Y. Inoue, T. Suzuki, M. Hattori, K. Yoshimoto, Y. Ohsumi and Y. Moriyasu

Plant Cell Physiol 2006; 47:1641-52  相似文献   

7.
《Autophagy》2013,9(12):2143-2157
Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.  相似文献   

8.
Macroautophagy/autophagy is a conserved degradation process in eukaryotic cells involving the sequestration of proteins and organelles within double-membrane vesicles termed autophagosomes. In filamentous fungi, its main purposes are the regulation of starvation adaptation and developmental processes. In contrast to nonselective bulk autophagy, selective autophagy is characterized by cargo receptors, which bind specific cargos such as superfluous organelles, damaged or harmful proteins, or microbes, and target them for autophagic degradation. Herein, using the core autophagy protein ATG8 as bait, GFP-Trap analysis followed by liquid chromatography mass spectrometry (LC/MS) identified a putative homolog of the human autophagy cargo receptor NBR1 (NBR1, autophagy cargo receptor) in the filamentous ascomycete Sordaria macrospora (Sm). Fluorescence microscopy revealed that SmNBR1 colocalizes with SmATG8 at autophagosome-like structures and in the lumen of vacuoles. Delivery of SmNBR1 to the vacuoles requires SmATG8. Both proteins interact in an LC3 interacting region (LIR)-dependent manner. Deletion of Smnbr1 leads to impaired vegetative growth under starvation conditions and reduced sexual spore production under non-starvation conditions. The human NBR1 homolog partially rescues the phenotypic defects of the fungal Smnbr1 deletion mutant. The Smnbr1 mutant can neither use fatty acids as a sole carbon source nor form fruiting bodies under oxidative stress conditions. Fluorescence microscopy revealed that degradation of a peroxisomal reporter protein is impaired in the Smnbr1 deletion mutant. Thus, SmNBR1 is a cargo receptor for pexophagy in filamentous ascomycetes.  相似文献   

9.
10.
《Autophagy》2013,9(2):288-289
Autophagy functions as a cell-autonomous effector mechanism of innate immunity by separating bacteria from cytosolic resources and delivering them for lysosomal destruction. How cytosolic bacteria are targeted for autophagy is incompletely understood. We recently discovered that Salmonella enterica serotype Typhimurium and Streptococcus pyogenes are detected by NDP52 (nuclear dot protein 52kDa), after these bacteria enter the cytosol of human cells and become decorated with poly-ubiquitinated proteins. NDP52 binds the bacterial ubiquitin coat as well as ATG8/LC3 and delivers cytosolic bacteria into autophagosomes. In the absence of NDP52 ubiquitin-coated bacteria accumulate outside ATG8/LC3+ autophagosomes. Cells lacking NDP52 fail to restrict bacterial proliferation, as do cells depleted of TBK1, an IKK family kinase colocalizing with NDP52 at the bacterial surface. Our findings demonstrate the existence of a receptor for the selective autophagy of cytosolic bacteria, suggesting that cells are able to differentiate between anti-bacterial and other forms of autophagy.  相似文献   

11.
Autophagy, an intracellular degradative pathway, maintains cell homeostasis under normal and stress conditions. Nascent double-membrane autophagosomes sequester and enclose cytosolic components and organelles, and subsequently fuse with the endosomal pathway allowing content degradation. Autophagy requires fusion of autophagosomes with late endosomes, but it is not known if fusion with early endosomes is essential. We show that fusion of AVs with functional early endosomes is required for autophagy. Inhibition of early endosome function by loss of COPI subunits (β′, β, or α) results in accumulation of autophagosomes, but not an increased autophagic flux. COPI is required for ER-Golgi transport and early endosome maturation. Although loss of COPI results in the fragmentation of the Golgi, this does not induce the formation of autophagosomes. Loss of COPI causes defects in early endosome function, as both transferrin recycling and EGF internalization and degradation are impaired, and this loss of function causes an inhibition of autophagy, an accumulation of p62/SQSTM-1, and ubiquitinated proteins in autophagosomes.  相似文献   

12.
13.
Autophagy is a process that is thought to occur in all eukaryotes in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon induction of autophagy, double membrane-bound structures called autophagosomes engulf portions of the cytoplasm and transfer them to the vacuole or lysosome for degradation. In this study, we have characterized two potential markers for autophagy in plants, the fluorescent dye monodansylcadaverine (MDC) and a green fluorescent protein (GFP)-AtATG8e fusion protein, and propose that they both label autophagosomes in Arabidopsis. Both markers label the same small, apparently membrane-bound structures found in cells under conditions that are known to induce autophagy such as starvation and senescence. They are usually seen in the cytoplasm, but occasionally can be observed within the vacuole, consistent with a function in the transfer of cytoplasmic material into the vacuole for degradation. MDC-staining and the GFP-AtATG8e fusion protein can now be used as very effective tools to complement biochemical and genetic approaches to the study of autophagy in plant systems.  相似文献   

14.
Autophagy is a ubiquitous, non-selective degradation process in eukaryotic cells that is conserved from yeast to man. Autophagy research has increased significantly in the last ten years, as autophagy has been connected with cancer, neurodegenerative disease and various human developmental processes. Autophagy also appears to play an important role in filamentous fungi, impacting growth, morphology and development. In this review, an autophagy model developed for the yeast Saccharomyces cerevisiae is used as an intellectual framework to discuss autophagy in filamentous fungi. Studies imply that, similar to yeast, fungal autophagy is characterized by the presence of autophagosomes and controlled by Tor kinase. In addition, fungal autophagy is apparently involved in protection against cell death and has significant effects on cellular growth and development. However, the only putative autophagy proteins characterized in filamentous fungi are Atg1 and Atg8. We discuss various strategies used to study and monitor fungal autophagy as well as the possible relationship between autophagy, physiology, and morphological development.  相似文献   

15.
Autophagy maintains cellular quality control by degrading organelles, and cytosolic proteins and their aggregates in lysosomes. Autophagy also degrades lipid droplets (LD) through a process termed lipophagy. During lipophagy, LD are sequestered within autophagosomes and degraded by lysosomal acid lipases to generate free fatty acids that are β-oxidized for energy. Lipophagy was discovered in hepatocytes, and since then has been shown to function in diverse cell types. Whether lipophagy degrades LD in the major fat storing cell—the adipocyte—remained unclear. We have found that blocking autophagy in brown adipose tissues (BAT) by deleting the autophagy gene Atg7 in BAT MYF5 (myogenic factor 5)-positive progenitors increases basal lipid content in BAT and decreases lipid utilization during cold exposure—indicating that lipophagy contributes to lipohomeostasis in the adipose tissue. Surprisingly, knocking out Atg7 in hypothalamic proopiomelanocortin (POMC) neurons also blocks lipophagy in BAT and liver suggesting that specific neurons within the central nervous system (CNS) exert telemetric control over lipophagy in BAT and liver.  相似文献   

16.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane‐bound vesicles termed autophagosomes. The conserved Atg5–Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5–Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5–Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre‐autophagosomal structure but is essential for autophagy and cytoplasm‐to‐vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5–Atg12/Atg16 complex during autophagosome formation.  相似文献   

17.
18.
Autophagy is a degradative process by which eukaryotic cells digest their own components to provide aminoacids that may function as energy source under nutritional stress conditions. There is experimental evidence for autophagy in parasitic protists belonging to the family Trypanosomatidae. However, few proteins implicated in this process have been characterized so far in these parasites. Moreover, it has been shown that autophagy is involved in Trypanosoma cruzi differentiation and thus might have a role in pathogenicity. Here, we report the cloning and biochemical characterization of TcVps15. In addition, we demonstrate that TcVps15 interact with the PI3K TcVps34 and that both proteins associate with cellular membranes. Under nutritional stress conditions, TcVps15 and TcVps34 modify their subcellular distribution showing a partial co‐localization in autophagosomes with TcAtg8.1 and using an active site TcVps15‐mutated version (TcVps15‐K219D‐HA) we demonstrated that this relocalization depends on the TcVps15 catalytic activity. Overexpression of TcVps15‐HA and TcVps15‐K219D‐HA also leads to increased accumulation of monodansylcadaverine (MDC) in autophagic vacuoles under nutritional stress conditions compared to wild‐type cells. In addition, the MDC‐specific activity shows to be significantly higher in TcVps15‐HA overexpressing cells when compared with TcVps15‐K219D‐HA. Our results reveal for the first time a role of TcVps15 as a key regulator of TcVps34 enzymatic activity and implicate the TcVps15‐Vps34 complex in autophagy in T. cruzi, exposing a new key pathway to explore novel chemotherapeutic targets.  相似文献   

19.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

20.
《Autophagy》2013,9(12):1415-1423
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号