首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

2.
It has been hypothesized that the wide range of forms and complexities of phosphorus (P) in soil may result in resource partitioning that contributes to the maintenance of plant species diversity. Here, we test whether the graminoid, Deschampsia cespitosa, and the ericaceous shrub, Vaccinium vitis‐idaea, which often coexist, display preferences in utilization of P forms, and differ in their production of extracellular P‐degrading enzymes. We provided plants with no additional P, or P forms with decreasing lability, namely sodium phosphate (SP), D‐glucose 6 phosphate (DG6P), sodium phytate (PASS), and a combination of SP, DG6P, and PASS. We also tested if preferences for P forms affected the competitive outcomes between the two species compared between conspecifics, as indicated by shoot biomass and acquisition of nitrogen (N) and P. Both D. cespitosa and V. vitis‐idaea produced the greatest biomass when supplied with a mix of all three forms of P. Of the three forms of P tested alone, shoot biomass produced by both species was least when supplied with SP. D. cespitosa performed better when grown with PASS or a mix of all P forms compared with the performance of V. vitis‐idaea on these substrates. This was reflected by substantially greater phytase activity on the surface of its roots compared with V. vitis‐idaea. In contrast, V. vitis‐idaea produced more phosphomonoesterase to hydrolyze the simple organic P form, DG6P. Although N was kept constant in the treatments, the ability of plants to acquire it was dependent on species identity, competition, and P supply. These findings provide direct evidence for preferences toward specific forms of P and indicate a key role played by organic forms of P. The results support the idea that partitioning for soil P is one factor regulating plant competition, and ultimately, community composition. Our data also highlight the importance of the interplay between P supply and N acquisition.  相似文献   

3.
3,4‐Dihydroxy‐2‐butanone‐4‐phosphate synthase (DHBPS) encoded by ribB gene is one of the first enzymes in riboflavin biosynthesis pathway and catalyzes the conversion of ribulose‐5‐phosphate (Ru5P) to 3,4‐dihydroxy‐2‐butanone‐4‐phosphate and formate. DHBPS is an attractive target for developing anti‐bacterial drugs as this enzyme is essential for pathogens, but absent in humans. The recombinant DHBPS enzyme of Salmonella requires magnesium ion for its activity and catalyzes the formation of 3,4‐dihydroxy‐2‐butanone‐4‐phosphate from Ru5P at a rate of 199 nmol min?1 mg?1 with Km value of 116 μM at 37°C. Further, we have determined the crystal structures of Salmonella DHBPS in complex with sulfate, Ru5P and sulfate‐zinc ion at a resolution of 2.80, 2.52, and 1.86 Å, respectively. Analysis of these crystal structures reveals that the acidic loop (residues 34–39) responsible for the acid‐base catalysis is disordered in the absence of substrate or metal ion at the active site. Upon binding either substrate or sulfate and metal ions, the acidic loop becomes stabilized, adopts a closed conformation and interacts with the substrate. Our structure for the first time reveals that binding of substrate Ru5P alone is sufficient for the stabilization of the acidic active site loop into a closed conformation. In addition, the Glu38 residue from the acidic active site loop undergoes a conformational change upon Ru5P binding, which helps in positioning the second metal ion that stabilizes the Ru5P and the reaction intermediates. This is the first structural report of DHBPS in complex with either substrate or metal ion from any eubacteria. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The abundance of the human intestinal symbiont Akkermansia muciniphila has found to be inversely correlated with several diseases, including metabolic syndrome and obesity. A. muciniphila is known to use mucin as sole carbon and nitrogen source. To study the physiology and the potential for therapeutic applications of this bacterium, we designed a defined minimal medium. The composition of the medium was based on the genome‐scale metabolic model of A. muciniphila and the composition of mucin. Our results indicate that A. muciniphila does not code for GlmS, the enzyme that mediates the conversion of fructose‐6‐phosphate (Fru6P) to glucosamine‐6‐phosphate (GlcN6P), which is essential in peptidoglycan formation. The only annotated enzyme that could mediate this conversion is Amuc‐NagB on locus Amuc_1822. We found that Amuc‐NagB was unable to form GlcN6P from Fru6P at physiological conditions, while it efficiently catalyzed the reverse reaction. To overcome this inability, N‐acetylglucosamine needs to be present in the medium for A. muciniphila growth. With these findings, the genome‐scale metabolic model was updated and used to accurately predict growth of A. muciniphila on synthetic media. The finding that A. muciniphila has a necessity for GlcNAc, which is present in mucin further prompts the adaptation to its mucosal niche.  相似文献   

5.
For conspecific parasites sharing the same host, kin recognition can be advantageous when the fitness of one individual depends on what another does; yet, evidence of kin recognition among parasites remains limited. Some trematodes, like Coitocaecum parvum, have plastic life cycles including two alternative life‐history strategies. The parasite can wait for its intermediate host to be eaten by a fish definitive host, thus completing the classical three‐host life cycle, or mature precociously and produce eggs while still inside its intermediate host as a facultative shortcut. Two different amphipod species are used as intermediate hosts by C. parvum, one small and highly mobile and the other larger, sedentary, and burrow dwelling. Amphipods often harbour two or more C. parvum individuals, all capable of using one or the other developmental strategy, thus creating potential conflicts or cooperation opportunities over transmission routes. This model was used to test the kin recognition hypothesis according to which cooperation between two conspecific individuals relies on the individuals' ability to evaluate their degree of genetic similarity. First, data showed that levels of intrahost genetic similarity between co‐infecting C. parvum individuals differed between host species. Second, genetic similarity between parasites sharing the same host was strongly linked to their likelihood of adopting identical developmental strategies. Two nonexclusive hypotheses that could explain this pattern are discussed: kin recognition and cooperation between genetically similar parasites and/or matching genotypes involving parasite genotype–host compatibility filters.  相似文献   

6.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

7.
This study investigates the mechanism of action behind the long‐term responses (12–16 months) of two BRAF WT melanoma patients to the AKT inhibitor MK‐2206 in combination with paclitaxel and carboplatin. Although single agent MK‐2206 inhibited phospho‐AKT signaling, it did not impact in vitro melanoma growth or survival. The combination of MK‐2206 with paclitaxel and carboplatin was cytotoxic in long‐term colony formation and 3D spheroid assays, and induced autophagy. Autophagy was initially protective with autophagy inhibitors and deletion of ATG5 found to enhance cytotoxicity. Although prolonged autophagy induction (>6 days) led to caspase‐dependent apoptosis, drug resistant clones still emerged. Autophagy inhibition enhanced the cell death response through reactive oxygen species and could be reversed by anti‐oxidants. We demonstrate for the first time that AKT inhibition in combination with chemotherapy may have clinical activity in BRAF WT melanoma and show that an autophagy inhibitor may prevent resistance to these drugs.  相似文献   

8.
IL‐18 is known to play a key role limiting Cryptosporidium parvum infection. In this study, we show that IL‐18 depletion in SCID mice significantly exacerbates C. parvum infection, whereas, treatment with recombinant IL‐18 (rIL‐18), significantly decreases the parasite load, as compared to controls. Increases in serum IFN‐γ levels as well as the up‐regulation of the antimicrobial peptides, cathelicidin antimicrobial peptide and beta defensin 3 (Defb3) were observed in the intestinal mucosa of mice treated with rIL‐18. In addition, C. parvum infection significantly increased mRNA expression levels (> 50 fold) of the alpha defensins, Defa3 and 5, respectively. Interestingly, we also found a decrease in mRNA expression of IL‐33 (a recently identified cytokine in the same family as IL‐18) in the small intestinal tissue from mice treated with rIL‐18. In comparison, the respective genes were induced by IL‐18 depletion. Our findings suggest that IL‐18 can mediate its protective effects via different routes such as IFN‐γ induction or by directly stimulating intestinal epithelial cells to increase antimicrobial activity.  相似文献   

9.
Cellodextrins are linear β‐1,4‐gluco‐oligosaccharides that are soluble in water up to a degree of polymerization (DP) of ≈6. Soluble cellodextrins have promising applications as nutritional ingredients. A DP‐controlled, bottom‐up synthesis from expedient substrates is desired for their bulk production. Here, a three‐enzyme glycoside phosphorylase cascade is developed for the conversion of sucrose and glucose into short‐chain (soluble) cellodextrins (DP range 3–6). The cascade reaction involves iterative β‐1,4‐glucosylation of glucose from α‐glucose 1‐phosphate (αGlc1‐P) donor that is formed in situ from sucrose and phosphate. With final concentration and yield of the soluble cellodextrins set as targets for biocatalytic synthesis, three major factors of reaction efficiency are identified and partly optimized: the ratio of enzyme activity, the ratio of sucrose and glucose, and the phosphate concentration used. The efficient use of the phosphate/αGlc1‐P shuttle for cellodextrin production is demonstrated and the soluble product at 40 g L?1 is obtained under near‐complete utilization of the donor substrate offered (88 mol% from 200 mm sucrose). The productivity is 16 g (L h)?1. Through a simple two‐step route, the soluble cellodextrins are recovered from the reaction mixture in ≥95% purity and ≈92% yield. Overall, this study provides the basis for their integrated production.  相似文献   

10.
Inorganic pyrophosphate (PPi) is a key metabolite in cellular bioenergetics under chronic stress conditions in prokaryotes, protists and plants. Inorganic pyrophosphatases (PPases) are essential enzymes controlling the cellular concentration of PPi and mediating intracellular pH and Ca2+ homeostasis. We report the effects of the antimalarial drugs chloroquine (CQ) and artemisinin (ART) on the in vitro growth of Philasterides dicentrarchi, a scuticociliate parasite of turbot; we also evaluated the action of these drugs on soluble (sPPases) and vacuolar H+‐PPases (H+‐PPases). CQ and ART inhibited the in vitro growth of ciliates with IC50 values of respectively 74 ± 9 μM and 80 ± 8 μM. CQ inhibits the H+ translocation (with an IC50 of 13.4 ± 0.2 μM), while ART increased translocation of H+ and acidification. However, both drugs caused a decrease in gene expression of H+‐PPases. CQ significantly inhibited the enzymatic activity of sPPases, decreasing the consumption of intracellular PPi. ART inhibited intracellular accumulation of Ca2+ induced by ATP, indicating an effect on the Ca2+‐ATPase. The results suggest that CQ and ART deregulate enzymes associated with PPi and Ca2+ metabolism, altering the intracellular pH homeostasis vital for parasite survival and providing a target for the development of new drugs against scuticociliatosis.  相似文献   

11.
Hemolysis is the red blood cell abnormality most often associated with adverse effect of drug therapy. Drug‐induced or drug‐associated hyperglycemia could decrease the activity of hexokinase. The aim of this study was to investigate the inhibitory effects of some commonly used drugs that have hyperglycemic side effect on the human erythrocyte hexokinase enzyme in vitro. Hexokinase was purified from human erythrocytes using sequential chromatography, with a specific activity of 0.96 ± 0.18 U/g hemoglobin, and assayed in the presence of selected drugs that have hyperglycemic side effect. The IC50 were determined from the regression analysis graph. Correlation analysis showed that there was positive correlation between the hyperglycemic side effect of some of the tested drugs and decrease of hexokinase activity. This suggests that, at least in part, these drugs exert their hyperglycemic effect by inhibiting glucose phosphorylation by the hexokinase, which consequently causes the glucose accumulation.  相似文献   

12.
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin‐binding proteome of T. gondii. The parasite‐derived components were affinity‐purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin‐binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion‐related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry‐derived proteins were prominently identified. The profiling of the heparin‐binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin‐mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.  相似文献   

13.
The nutritionally versatile soil bacterium Acinetobacter baylyi ADP1 copes with salt stress by the accumulation of compatible solutes, a strategy that is widespread in nature. This bacterium synthesizes the sugar alcohol mannitol de novo in response to osmotic stress. In a previous study, we identified MtlD, a mannitol‐1‐phosphate dehydrogenase, which is essential for mannitol biosynthesis and which catalyses the first step in mannitol biosynthesis, the reduction of fructose‐6‐phosphate (F‐6‐P) to the intermediate mannitol‐1‐phosphate (Mtl‐1‐P). Until now, the identity of the second enzyme, the phosphatase that catalyses the dephosphorylation of Mtl‐1‐P to mannitol, was elusive. Here we show that MtlD has a unique sequence among known mannitol‐1‐phosphate dehydrogenases with a haloacid dehalogenase (HAD)‐like phosphatase domain at the N‐terminus. This domain is indeed shown to have a phosphatase activity. Phosphatase activity is strictly Mg2+ dependent. Nuclear magnetic resonance analysis revealed that purified MtlD catalyses not only reduction of F‐6‐P but also dephosphorylation of Mtl‐1‐P. MtlD of A. baylyi is the first bifunctional enzyme of mannitol biosynthesis that combines Mtl‐1‐P dehydrogenase and phosphatase activities in a single polypeptide chain. Bioinformatic analysis revealed that the bifunctional enzyme is widespread among Acinetobacter strains but only rarely present in other phylogenetic tribes.  相似文献   

14.
Cordyceps cicadae is a medicinal fungus used in treating night sweat, childhood convulsions, vision improvement and pain. This study was designed to evaluate the anti‐diabetic activity of the crude polysaccharide (SHF) from the mycelium and body portion of Ccicadae. Diabetes mellitus was induced in the rat with a single intravenous injection of alloxan monohydrate (150 mg/kg). In other to evaluate the anti‐diabetic effects of Ccicadae polysaccharide in alloxan‐induced diabetic rats, the crude polysaccharide (SHF at 100, 200 and 400 mg/kg body weight) and glibenclamide were administered orally to diabetic rats for 30 days. Blood glucose level, total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), creatinine (CREA), urea, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH) were determined. SHF showed significant reduction in blood glucose in diabetic rats. Treatment of diabetic rats also resulted an improvement in body weights, increased HDL, SOD and GSH, as well as decreased TC, TG, LDL, MDA, urea, CREA, ALT, AST and ALP. These results suggested that Ccicadae polysaccharide displayed anti‐hyperglycemic, anti‐hyperlipidemic and antioxidant activities and could be a promising therapeutic source in managing diabetes mellitus and its associated complications.  相似文献   

15.
Carnosol is a natural compound with pharmacological action due to its anti‐cancer properties. However, the precise mechanism for its anti‐carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double‐strand breaks (DSBs). We also found that cells lacking tyrosyl‐DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl‐DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1‐DNA cleavage complex (TOP1cc) and TOP2‐DNA cleavage complex (TOP2cc). When comparing the accumulation of γ‐H2AX foci and the number of chromosomal aberrations (CAs) with wild‐type (WT) cells, the susceptivity of the TDP1?/? and TDP2?/? cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti‐cancer effect of carnosol.  相似文献   

16.
Plasmodium spp., which causes malaria, produces a histamine‐releasing factor (HRF), an orthologue of mammalian HRF. Histamine‐releasing factor produced by erythrocytic stages of the parasite is thought to play a role in the pathogenesis of severe malaria. Here, we show in a rodent model that HRF is not important during the erythrocytic but pre‐erythrocytic phase of infection, which mainly consists in the transformation in the liver of the mosquito‐injected parasite form into the erythrocyte‐infecting form. Development of P. berghei ANKA cl15cy1 liver stages lacking HRF is impaired and associated with an early rise in systemic IL‐6, a cytokine that strongly suppresses development of Plasmodium liver stages. The defect is rescued by injection of anti‐IL‐6 antibodies or infection in IL‐6‐deficient mice and parasite HRF is sufficient to decrease IL‐6 synthesis, indicating a direct role of parasite HRF in reducing host IL‐6. The target cells modulated by HRF for IL‐6 production at early time points during liver infection are neutrophils. Parasite HRF is thus used to down‐regulate a cytokine with anti‐parasite activity. Our data also highlight the link between a prolonged transition from liver to blood‐stage infection and reduced incidence of experimental cerebral malaria.  相似文献   

17.
The need of new anti‐inflammatory drugs has led to the search for safer and more potent molecules in distinct sources, such as natural products. This work aimed to explore the anti‐inflammatory potential of aqueous extracts from two herbal teas (Annona muricata L. and Jasminum grandiflorum L.) in RAW 264.7 macrophages cells and in cell‐free assays. Furthermore, the phenolic composition of both extracts and of their hydrolysates was characterized by HPLC‐DAD, in order to establish possible relationships with the biological activity. In a general way, A. muricata displayed a stronger capacity to inhibit nitric oxide (NO) production and the activity of phospholipase A2 (PLA2), displaying an IC50 value of 142 μg/ml against this enzyme. A deeper look at phenolic compounds revealed that aglycones had more capacity to inhibit NO and PLA2 than their corresponding glycosides, quercetin being clearly the most potent one (IC50 = 7.47 and 1.36 μm , respectively). In addition, 5‐O‐caffeoylquinic acid, at 1.56 μm , could also inhibit PLA2 (ca. 35%). Our findings suggest that the consumption of both herbal teas may be a preventive approach to inflammatory disorders.  相似文献   

18.
A series of Matijin‐Su (MTS, (2S)‐2‐{[(2S)‐2‐benzamido‐3‐phenylpropanoyl]amino}‐3‐phenylpropyl acetate) derivatives were synthesized and evaluated for their anti‐HBV and cytotoxic activities in vitro. Six compounds ( 4g , 4j , 5c , 5g , 5h and 5i ) showed significant inhibition against HBV DNA replication with the IC50 values in range of 2.18 – 8.55 μm , which were much lower than that of positive control lamivudine (IC50 82.42 μm ). In particular, compounds 5h (IC50 2.18 μm ; SI 151.59) and 5j (IC50 5.65 μm ; SI 51.16) displayed relatively low cytotoxicities, resulting in high SI values. Notably, besides the anti‐HBV DNA replication activity, compound 4j also exhibited more potent in vitro cytotoxic activity than 5‐fluorouracil in two hepatocellular carcinoma cell (HCC) lines (QGY‐7701 and SMMC‐7721), indicating that 4j may be a promising lead for the exploration of drugs with dual therapeutic effects on HBV infection and HBV‐induced HCC.  相似文献   

19.
Effects of parasites on individual hosts can eventually translate to impacts on host communities. In particular, parasitism can differentially affect host fitness among sympatric and interacting host species. We examined whether the impact of shared parasites varied among host species within the same community. Specifically, we looked at the impacts of the acanthocephalan Acanthocephalus galaxii, the trematodes Coitocaecum parvum and Maritrema poulini, and the nematode Hedruris spinigera, on three host species: the amphipods, Paracalliope fluviatilis and Paracorophium excavatum, and the isopod, Austridotea annectens. We assessed parasite infection levels in the three host species and tested for effects on host survival, behavior, probability of pairing, and fecundity. Maritrema poulini and C. parvum were most abundant in P. excavatum but had no effect on its survival, whereas they negatively affected the survival of P. fluviatilis, the other amphipod. Female amphipods carrying young had higher M. poulini and C. parvum abundance than those without, yet the number of young carried was not linked to parasite abundance. Behavior of the isopod A. annectens was affected by M. poulini infection; more heavily infected individuals were more active. Paracorophium excavatum moved longer distances when abundance of C. parvum was lower, yet no relationship existed with respect to infection by both M. poulini and C. parvum. The differential effects of parasites on amphipods and isopods may lead to community‐wide effects. Understanding the consequences of parasitic infection and differences among host species is key to gaining greater insight into the role of parasite mediation in ecosystem dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号