首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary theory predicts that levels of dispersal vary in response to the extent of local competition for resources and the relatedness between potential competitors. Here, we test these predictions by making use of a female dispersal dimorphism in the parasitoid wasp Melittobia australica. We show that there are two distinct female morphs, which differ in morphology, pattern of egg production, and dispersal behaviour. As predicted by theory, we found that greater competition for resources resulted in increased production of dispersing females. In contrast, we did not find support for the prediction that high relatedness between competitors increases the production of dispersing females in Melittobia. Finally, we exploit the close links between the evolutionary processes leading to selection for dispersal and for biased sex ratios to examine whether the pattern of dispersal can help distinguish between competing hypotheses for the lack of sex ratio adjustment in Melittobia.  相似文献   

2.
Sex‐biased dispersal is common in vertebrates, although the ecological and evolutionary causes of sex differences in dispersal are debated. Here, we investigate sex differences in both natal and breeding dispersal distances using a large dataset on birds including 86 species from 41 families. Using phylogenetic comparative analyses, we investigate whether sex‐biased natal and breeding dispersal are associated with sexual selection, parental sex roles, adult sex ratio (ASR), or adult mortality. We show that neither the intensity of sexual selection, nor the extent of sex bias in parental care was associated with sex‐biased natal or breeding dispersal. However, breeding dispersal was related to the social environment since male‐biased ASRs were associated with female‐biased breeding dispersal. Male‐biased ASRs were associated with female‐biased breeding dispersal. Sex bias in adult mortality was not consistently related to sex‐biased breeding dispersal. These results may indicate that the rare sex has a stronger tendency to disperse in order to find new mating opportunities. Alternatively, higher mortality of the more dispersive sex could account for biased ASRs, although our results do not give a strong support to this explanation. Whichever is the case, our findings improve our understanding of the causes and consequences of sex‐biased dispersal. Since the direction of causality is not yet known, we call for future studies to identify the causal relationships linking mortality, dispersal, and ASR.  相似文献   

3.
The ultimate causes for predominant male‐biased dispersal (MBD) in mammals and female‐biased dispersal (FBD) in birds are still subject to much debate. Studying exceptions to general patterns of dispersal, for example, FBD in mammals, provides a valuable opportunity to test the validity of proposed evolutionary pressures. We used long‐term behavioural and genetic data on individually banded Proboscis bats (Rhynchonycteris naso) to show that this species is one of the rare mammalian exceptions with FBD. Our results suggest that all females disperse from their natal colonies prior to first reproduction and that a substantial proportion of males are philopatric and reproduce in their natal colonies, although male immigration has also been detected. The age of females at first conception falls below the tenure of males, suggesting that females disperse to avoid father–daughter inbreeding. Male philopatry in this species is intriguing because Proboscis bats do not share the usual mammalian correlates (i.e. resource‐defence polygyny and/or kin cooperation) of male philopatry. They have a mating strategy based on female defence, where local mate competition between male kin is supposedly severe and should prevent the evolution of male philopatry. However, in contrast to immigrant males, philopatric males may profit from acquaintance with the natal foraging grounds and may be able to attain dominance easier and/or earlier in life. Our results on Proboscis bats lent additional support to the importance of inbreeding avoidance in shaping sex‐biased dispersal patterns and suggest that resource defence by males or kin cooperation cannot fully explain the evolution of male philopatry in mammals.  相似文献   

4.
Some anthropologists and primatologists have argued that, judging by extant chimpanzees and humans, which are female‐biased dispersers, the common ancestors of humans and chimpanzees were also female‐biased dispersers. It has been thought that sex‐biased dispersal patterns have been genetically transmitted for millions of years. However, this character has changed many times with changes in environment and life‐form during human evolution and historical times. I examined life‐form and social organization of nonhuman primates, among them gatherers (foragers), hunter‐gatherers, agriculturalists, industrialists, and modern and extant humans. I conclude that dispersal patterns changed in response to environmental conditions during primate and human evolution.  相似文献   

5.
There is growing interest in resolving the curious disconnect between the fields of kin selection and sexual selection. Rankin's (2011, J. Evol. Biol. 24 , 71–81) theoretical study of the impact of kin selection on the evolution of sexual conflict in viscous populations has been particularly valuable in stimulating empirical research in this area. An important goal of that study was to understand the impact of sex‐specific rates of dispersal upon the coevolution of male‐harm and female‐resistance behaviours. But the fitness functions derived in Rankin's study do not flow from his model's assumptions and, in particular, are not consistent with sex‐biased dispersal. Here, we develop new fitness functions that do logically flow from the model's assumptions, to determine the impact of sex‐specific patterns of dispersal on the evolution of sexual conflict. Although Rankin's study suggested that increasing male dispersal always promotes the evolution of male harm and that increasing female dispersal always inhibits the evolution of male harm, we find that the opposite can also be true, depending upon parameter values.  相似文献   

6.
Sex‐biased dispersal is a much‐discussed feature in literature on dispersal. Diverse hypotheses have been proposed to explain the evolution of sex‐biased dispersal, a difference in dispersal rate or dispersal distance between males and females. An early hypothesis has indicated that it may rely on the difference in sex chromosomes between males and females. However, this proposal was quickly rejected without a real assessment. We propose a new perspective on this hypothesis by investigating the evolution of sex‐biased dispersal when dispersal genes are sex‐linked, that is when they are located on the sex chromosomes. We show that individuals of the heterogametic sex disperse relatively more than do individuals of the homogametic sex when dispersal genes are sex‐linked rather than autosomal. Although such a sex‐biased dispersal towards the heterogametic sex is always observed in monogamous species, the mating system and the location of dispersal genes interact to modulate sex‐biased dispersal in monandry and polyandry. In the context of the multicausality of dispersal, we suggest that sex‐linked dispersal genes can influence the evolution of sex‐biased dispersal.  相似文献   

7.
Sex ratio theory provides a clear and simple way to test if nonsocial haplodiploid wasps can discriminate between kin and nonkin. Specifically, if females can discriminate siblings from nonrelatives, then they are expected to produce a higher proportion of daughters if they mate with a sibling. This prediction arises because in haplodiploids, inbreeding (sib-mating) causes a mother to be relatively more related to her daughters than her sons. Here we formally model this prediction for when multiple females lay eggs in a patch, and test it with the parasitoid wasp Nasonia vitripennis. Our results show that females do not adjust their sex ratio behaviour dependent upon whether they mate with a sibling or nonrelative, in response to either direct genetic or a range of indirect environmental cues. This suggests that females of N. vitripennis cannot discriminate between kin and nonkin. The implications of our results for the understanding of sex ratio and social evolution are discussed.  相似文献   

8.
Sexual selection can explain major micro‐ and macro‐evolutionary patterns. Much of current theory predicts that the strength of sexual selection (i) is driven by the relative abundance of males and females prepared to mate (i.e. the operational sex ratio, OSR) and (ii) can be generally estimated by calculating intra‐sexual variation in mating success (e.g. the opportunity for sexual selection, Is). Here, we demonstrate the problematic nature of these predictions. The OSR and Is only accurately predict sexual selection under a limited set of circumstances, and more specifically, only when mate monopolization is extremely strong. If mate monopolization is not strong, using OSR or Is as proxies or measures of sexual selection is expected to produce spurious results that lead to the false conclusion that sexual selection is strong when it is actually weak. These findings call into question the validity of empirical conclusions based on these measures of sexual selection.  相似文献   

9.
Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex‐biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female‐biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.  相似文献   

10.
In animal populations, sib mating is often the primary source of inbreeding depression (ID). We used recently wild‐caught Drosophila melanogaster to test whether such ID is amplified by environmental stress and, in males, by sexual selection. We also investigated whether increased ID because of stress (increased larval competition) persisted beyond the stressed stage and whether the effects of stress and sexual selection interacted. Sib mating resulted in substantial cumulative fitness losses (egg to adult reproduction) of 50% (benign) and 73% (stressed). Stress increased ID during the larval period (23% vs. 63%), but not during post‐stress reproductive stages (36% vs. 31%), indicating larval stress may have purged some adult genetic load (although ID was uncorrelated across stages). Sexual selection exacerbated inbreeding depression, with inbred male offspring suffering a higher reproductive cost than females, independent of stress (57% vs. 14% benign, 49% vs. 11% stress).  相似文献   

11.
Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy–dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite‐biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6‐year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand‐pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants.  相似文献   

12.
Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.  相似文献   

13.
Dispersal is nearly universal; yet, which sex tends to disperse more and their success thereafter depends on the fitness consequences of dispersal. We asked if lifetime fitness differed between residents and immigrants (successful between‐population dispersers) and their offspring using 29 years of monitoring from North American red squirrels (Tamiasciurus hudsonicus) in Canada. Compared to residents, immigrant females had 23% lower lifetime breeding success (LBS), while immigrant males had 29% higher LBS. Male immigration and female residency were favoured. Offspring born to immigrants had 15–43% lower LBS than offspring born to residents. We conclude that immigration benefitted males, but not females, which appeared to be making the best of a bad lot. Our results are in line with male‐biased dispersal being driven by local mate competition and local resource enhancement, while the intergenerational cost to immigration is a new complication in explaining the drivers of sex‐biased dispersal.  相似文献   

14.
Sexual selection may contribute to the evolution of plant sexual dimorphism by favoring architectural traits in males that improve pollen dispersal to mates. In both sexes, larger individuals may be favored by allowing the allocation of more resources to gamete production (a “budget” effect of size). In wind‐pollinated plants, large size may also benefit males by allowing the liberation of pollen from a greater height, fostering its dispersal (a “direct” effect of size). To assess these effects and their implications for trait selection, we measured selection on plant morphology in both males and females of the wind‐pollinated dioecious herb Mercurialis annua in two separate experimental common gardens at contrasting density. In both gardens, selection strongly favored males that disperse their pollen further. Selection for pollen production was observed in the high‐density garden only, and was weak. In addition, male morphologies associated with increased mean pollen dispersal differed between the two gardens, as elongated branches were favored in the high‐density garden, whereas shorter plants with longer inflorescence stalks were favored in the low‐density garden. Larger females were selected in both gardens. Our results point to the importance of both a direct effect of selection on male traits that affect pollen dispersal, and, to a lesser extent, a budget effect of selection on pollen production.  相似文献   

15.
There is much interest in understanding how population demography impacts upon social evolution. Here, we consider the impact of rate and pattern of dispersal upon a classic social evolutionary trait--the sex ratio. We recover existing analytical results for individual dispersal, and we extend these to allow for budding dispersal. In particular, while a cancelling of relatedness and kin competition effects means that the sex ratio is unaffected by the rate of individual dispersal, we find that a decoupling of relatedness and kin competition means that budding dispersal favours increasingly female-biased sex ratios. More generally, our analysis illustrates the relative ease with which biological problems involving class structure can be solved using a kin selection approach to social evolution theory.  相似文献   

16.
Females can benefit from mate choice for male traits (e.g. sexual ornaments or body condition) that reliably signal the effect that mating will have on mean offspring fitness. These male‐derived benefits can be due to material and/or genetic effects. The latter include an increase in the attractiveness, hence likely mating success, of sons. Females can potentially enhance any sex‐biased benefits of mating with certain males by adjusting the offspring sex ratio depending on their mate's phenotype. One hypothesis is that females should produce mainly sons when mating with more attractive or higher quality males. Here we perform a meta‐analysis of the empirical literature that has accumulated to test this hypothesis. The mean effect size was small (r = 0.064–0.095; i.e. explaining <1% of variation in offspring sex ratios) but statistically significant in the predicted direction. It was, however, not robust to correction for an apparent publication bias towards significantly positive results. We also examined the strength of the relationship using different indices of male attractiveness/quality that have been invoked by researchers (ornaments, behavioural displays, female preference scores, body condition, male age, body size, and whether a male is a within‐pair or extra‐pair mate). Only ornamentation and body size significantly predicted the proportion of sons produced. We obtained similar results regardless of whether we ran a standard random‐effects meta‐analysis, or a multi‐level, Bayesian model that included a correction for phylogenetic non‐independence. A moderate proportion of the variance in effect sizes (51.6–56.2%) was due to variation that was not attributable to sampling error (i.e. sample size). Much of this non‐sampling error variance was not attributable to phylogenetic effects or high repeatability of effect sizes among species. It was approximately equally attributable to differences (occurring for unknown reasons) in effect sizes among and within studies (25.3, 22.9% of the total variance). There were no significant effects of year of publication or two aspects of study design (experimental/observational or field/laboratory) on reported effect sizes. We discuss various practical reasons and theoretical arguments as to why small effect sizes should be expected, and why there might be relatively high variation among studies. Currently, there are no species where replicated, experimental studies show that mothers adjust the offspring sex ratio in response to a generally preferred male phenotype. Ultimately, we need more experimental studies that test directly whether females produce more sons when mated to relatively more attractive males, and that provide the requisite evidence that their sons have higher mean fitness than their daughters.  相似文献   

17.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

18.
Studies of sex allocation offer excellent opportunities for examining the constraints and limits on adaptation. A major topic of debate within this field concerns the extent to which the ability of individuals to adaptively manipulate their offspring sex ratio is determined by constraints such as the method of sex determination. We address this problem by comparing the extent of sex-ratio adjustment across taxa with different methods of sex determination, under the common selective scenario of interactions between relatives. These interactions comprise the following: local resource competition (LRC), local mate competition (LMC), and local resource enhancement (LRE). We found that: (1) species with supposedly constraining methods of sex determination showed consistent sex-ratio adjustment in the predicted direction; (2) vertebrates with chromosomal sex determination (CSD) showed less adjustment then haplodiploid invertebrates; (3) invertebrates with possibly constraining sex-determination mechanisms (CSD and pseudo-arrhenotoky) did not show less adjustment then haplodiploid invertebrates; (4) greater sex-ratio adjustment was seen in response to LRC and LMC than LRE; (5) greater sex-ratio adjustment was seen in response to interactions between relatives (LRC, LMC, and LRE) compared to responses to other environmental factors. Our results also illustrate the problem that sex-determination mechanism and selective pressure are confounded across taxa because vertebrates with CSD are influenced primarily by LRE whereas invertebrates are influenced by LRC and LMC. Overall, our analyses suggest that sex-allocation theory needs to consider simultaneously the influence of variable selection pressures and variable constraints when applying general theory to specific cases.  相似文献   

19.
Local mate competition (LMC) occurs when male relatives compete for mating opportunities, and this may favour the evolution of female-biased sex allocation. LMC theory is among the most well developed and empirically supported topics in behavioural ecology, clarifies links between kin selection, group selection and game theory, and provides among the best quantitative evidence for Darwinian adaptation in the natural world. Two striking invariants arise from this body of work: the number of sons produced by each female is independent of both female fecundity and also the rate of female dispersal. Both of these invariants have stimulated a great deal of theoretical and empirical research. Here, we show that both of these invariants break down when variation in female fecundity and limited female dispersal are considered in conjunction. Specifically, limited dispersal of females following mating leads to local resource competition (LRC) between female relatives for breeding opportunities, and the daughters of high-fecundity mothers experience such LRC more strongly than do those of low-fecundity mothers. Accordingly, high-fecundity mothers are favoured to invest relatively more in sons, while low-fecundity mothers are favoured to invest relatively more in daughters, and the overall sex ratio of the population sex ratio becomes more female biased as a result.  相似文献   

20.
Close inbreeding may have negative fitness effects. Consequently, organisms have evolved various mechanisms, which enable them to avoid close inbreeding. In no‐choice and choice experiments we assessed whether the predaceous mite Phytoseiulus persimilis Athias‐Henriot (Acari: Phytoseiidae) avoids close inbreeding by kin recognition. No‐choice experiments demonstrated that virgin females more readily accept unrelated males than they accept related ones, which suggests a female preference for unrelated mates. Because each female had been reared in isolation prior to experiments, females most likely imprinted on themselves, and later used self‐referent phenotype matching to assess potential mating partners. In contrast, neither female nor male choice experiments indicated a preference. Analyses of female and male behavior revealed that in choice experiments, female preference for unrelated males was probably confounded by male competition and/or altered by the different ecological context posed by choice experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号