首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
烤烟主要农艺性状的遗传与相关分析   总被引:8,自引:0,他引:8  
肖炳光  朱军  卢秀萍  白永富  李永平 《遗传》2006,28(3):317-323
利用包括基因型与环境互作的加性-显性遗传模型,对14个烤烟品种(系)及其配制的41个杂交组合在4个环境下的7个农艺性状表现进行遗传分析。结果表明,株高、节距、腰叶宽主要受加性效应控制,叶数、腰叶长受显性×环境互作效应影响最大,茎围以加性×环境互作效应、显性×环境互作效应为主,产量以加性效应、显性×环境互作效应为主。适应当地生态条件的品种(系)具有较高的正向加性效应。许多组合的显性主效应及在各试验点的显性×环境互作效应在方向上不尽一致,杂交组合的选配宜针对特定的生态环境进行。性状相关分析表明,大多数成对性状的各项相关系数为正值,且多以加性遗传相关为主,可利用株高对产量进行间接选择。
  相似文献   

2.
Phenotypic plasticity is commonly considered as a trait associated with invasiveness in alien plants because it may enhance the ability of plants to occupy a wide range of environments. Although the evidence of greater phenotypic plasticity in invasive plants is considerable, it is not yet conclusive. We used a meta‐analysis approach to evaluate whether invasive plant species show greater phenotypic plasticity than their native or non‐invasive counterparts. The outcome of such interspecific comparisons may be biased when phylogenetic relatedness is not taken into account. Consequently, species pairs belonged to the same genus, tribe or family. The meta‐analysis included 93 records from 35 studies reporting plastic responses to light, nutrients, water, CO2, herbivory and support availability. Contrary to what is often assumed, overall, phenotypic plasticity was similar between invasive plants and native or non‐invasive closely related species. The same result was found when separate analyses were conducted for trait plasticity to nutrients, light and water availability. Thus, invasive plant species and their native or non‐invasive counterparts are equally capable of displaying functional responses to environmental heterogeneity. The colonization of a wide range of environments by invasive plants could be due to their capacity to undergo adaptive ecotypic differentiation rather than to their ability to display plastic responses. Alternatively, phenotypic plasticity might play a role in plant invasion, but only during the initial phases, when tolerance of the novel environment is essential for plant survival. Afterwards, once alien plants are identified as invaders, the magnitude of phenotypic plasticity might be reduced after selection of the optimum phenotypes in each habitat. The identification of plant traits that consistently predict invasiveness might be a futile task because different traits favor invasiveness in different environments. Approaches at the local scale, focusing on the ecology of specific invasive plants, could be more fruitful than global macro‐analyses.  相似文献   

3.
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long‐lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.  相似文献   

4.
Question: The quantification of functional traits in natural communities can be difficult (e.g. root traits, RGR). Can functional traits measured on pot grown plants be reliably applied to natural communities? Alternatively, can below‐ground plant traits be predicted from above‐ground traits? Location: Southeastern Australia. Methods: We compared 17 shoot, root and whole‐plant morphological traits measured on 14 plant species in a native grassland community to those measured under two different pot conditions: unfertilised and fertilised. Results: The majority of trait values for pot grown plants differed to plants in the field, however, species ranking remained consistent for most leaf traits between the field and the two pot growing conditions. In contrast, species ranking was not consistent for most whole plant traits when comparing field plants to fertilised pot grown plants, providing a caution against the tendency to grow plants in controlled conditions at ‘optimal’ (high) resource levels. Moderate to strong correlations were found between below‐ground and above‐ground plant traits, including between root dry matter content and leaf dry matter content, and between specific root area and specific leaf area. Conclusions: The utility of pot grown plants to quantify traits for field plants is highly dependent on the selection of the growing conditions in the controlled environment. The consistency we observed between above‐ground and below‐ground trait strategies suggests that below‐ground traits may be predictable based on above‐ground traits, reducing the need to quantify root traits on cultured plants.  相似文献   

5.
Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal–preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal–preference phenotypic covariance in a host‐specific, plant‐feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field‐collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal–preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.  相似文献   

6.
Breeding has transformed wild plant species into modern crops, increasing the allocation of their photosynthetic assimilate into grain, fiber, and other products for human use. Despite progress in increasing the harvest index, much of the biomass of crop plants is not utilized. Potential uses for the large amounts of agricultural residues that accumulate are animal fodder or bioenergy, though these may not be economically viable without additional efforts such as targeted breeding or improved processing. We characterized leaf and stem tissue from a diverse set of rice genotypes (varieties) grown in two environments (greenhouse and field) and report bioenergy-related traits across these variables. Among the 16 traits measured, cellulose, hemicelluloses, lignin, ash, total glucose, and glucose yield changed across environments, irrespective of the genotypes. Stem and leaf tissue composition differed for most traits, consistent with their unique functional contributions and suggesting that they are under separate genetic control. Plant variety had the least influence on the measured traits. High glucose yield was associated with high total glucose and hemicelluloses, but low lignin and ash content. Bioenergy yield of greenhouse-grown biomass was higher than field-grown biomass, suggesting that greenhouse studies overestimate bioenergy potential. Nevertheless, glucose yield in the greenhouse predicts glucose yield in the field (ρ?=?0.85, p?<?0.01) and could be used to optimize greenhouse (GH) and field breeding trials. Overall, efforts to improve cell wall composition for bioenergy require consideration of production environment, tissue type, and variety.  相似文献   

7.
Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield‐enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse‐grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24‐h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open‐pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse‐grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.  相似文献   

8.
Improving salinity tolerance in crop plants: a biotechnological view   总被引:1,自引:0,他引:1  
Salinity limits the production capabilities of agricultural soils in large areas of the world. Both breeding and screening germplasm for salt tolerance encounter the following limitations: (a) different phenotypic responses of plants at different growth stages, (b) different physiological mechanisms, (c) complicated genotype × environment interactions, and (d) variability of the salt-affected field in its chemical and physical soil composition. Plant molecular and physiological traits provide the bases for efficient germplasm screening procedures through traditional breeding, molecular breeding, and transgenic approaches. However, the quantitative nature of salinity stress tolerance and the problems associated with developing appropriate and replicable testing environments make it difficult to distinguish salt-tolerant lines from sensitive lines. In order to develop more efficient screening procedures for germplasm evaluation and improvement of salt tolerance, implementation of a rapid and reliable screening procedure is essential. Field selection for salinity tolerance is a laborious task; therefore, plant breeders are seeking reliable ways to assess the salt tolerance of plant germplasm. Salt tolerance in several plant species may operate at the cellular level, and glycophytes are believed to have special cellular mechanisms for salt tolerance. Ion exclusion, ion sequestration, osmotic adjustment, macromolecule protection, and membrane transport system adaptation to saline environments are important strategies that may confer salt tolerance to plants. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches. The first approach is selection of mutant cell lines from cultured cells and plant regeneration from such cells (somaclones). In vitro screening of plant germplasm for salt tolerance is the second approach, and a successful employment of this method in durum wheat is presented here. Doubled haploid lines derived from pollen culture of F1 hybrids of salt-tolerant parents are promising tools to further improve salt tolerance of plant cultivars. Enhancement of resistance against both hyper-osmotic stress and ion toxicity may also be achieved via molecular breeding of salt-tolerant plants using either molecular markers or genetic engineering.  相似文献   

9.
Although the ecological impacts of invasive species are well known, the evolutionary impacts on recipient native grass communities are not. We suggest that remnant native plants may provide desirable seed sources for restoration and native plant production. Native populations exposed to the selective pressures associated with exotic invasion may retain traits that increase their ability to coexist with invasive species. Two generations of Sporobolus airoides Torr. (Alkali sacaton) plants derived from lineages collected from within long‐term invaded areas of Acroptilon repens (L.) DC (Russian knapweed) and from adjacent non‐invaded areas were propagated in a greenhouse to evaluate generational changes in phenotypic traits from the production environment. Given the difference in invasion history of the two populations, we hypothesized that invaded and non‐invaded subpopulations would differ phenotypically. Phenotypic measurements revealed that invaded subpopulations had greater vegetative growth, whereas non‐invaded subpopulations had increased sexual reproduction. Phenotypic expression changed from the first to the second generation, predominantly in the invaded subpopulation. Generational phenotypic shifts are disadvantageous for native seed production which requires a standard product to sell commercially. However, phenotypic variation may improve field seed survival. This research demonstrates the potential value of targeting post‐invasion remnant grass populations for restoration.  相似文献   

10.
Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled‐environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L ‘wheelie bins’) that allow detailed phenotyping of small field‐crop populations under semi‐controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi‐environment field trials. We found that we were able to predict yields in the field with high accuracy from container‐grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre‐breeding populations. Investment in automated large‐container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre‐breeding materials for abiotic stress response traits with a positive influence on yield.  相似文献   

11.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

12.
QTL×环境互作对标记辅助选择响应的影响   总被引:2,自引:0,他引:2  
刘鹏渊  朱军  陆燕 《遗传学报》2006,33(1):63-71
基因型×环境互作是植物数量性状的普通属性和遗传育种改良的关注重点.采用Monte Carlo模拟方法研究了基因型×环境互作对标记辅助选择(Marker-assisted selection,简称MAS)响应的影响,揭示了育种上利用QTL(Quantitafivetrait locus,简称QTL)应当同时考虑其环境互作效应.存在基因型×环境互作下,MAS比普通表型选择更有效.特别以选育广适应性的品种为目标,MAS的优越性更明显.基于单个环境QTLs的MAS,QTL×环境互作效应通常降低了一般选择响应,一般选择响应累积量的降低程度与改良性状的QTL×环境互作效应大小相关.基于多个环境QTLs的MAS,不但产生较高的一般选择响应,而且获得的一般选择响应不受其QTL×环境互作效应大小的影响.但在某一特定环境下获得的总体选择响应仅与改良性状的总遗传率大小有关,普通遗传率和基因型与环境互作遗传率的相对变化对其影响很小.还比较研究了单地和穿梭选择对MAS遗传响应的影响.植物育种者应谨慎将某一环境的QTL信息用于实施另一环境的育种研究.  相似文献   

13.
东北春大豆种质资源表型分析及综合评价   总被引:2,自引:0,他引:2  
种质资源是大豆遗传育种和解析复杂数量性状的基础,通过对种质资源的评价,可指导育种实践中优异互补亲本的选择,提高优异基因交流累加和新品种培育的效率。本研究选用来自东北三省一区1923-2010年间选育的340份春大豆种质资源,通过在牡丹江地区对12个表型性状的2年综合鉴定,评价品种群体遗传变异特点和筛选优异种质资源,结果表明:(1)春大豆种质资源表型变异丰富。除生育期年份间差异不显著外,其他性状品种间和年份间均呈显著的差异,且2年变化趋势相同。有效分枝数变异幅度最大,其次是主茎荚数、单株粒重和株高,这些性状选择潜力较大,品质性状的变异幅度较小,选择潜力有限;(2)表型性状特征频率分布均符合正态分布。受育成单位纬度和育种目标的影响,生育期呈现北早南晚,北部育成品种营养体较小、植株矮小、节数相对较少、脂肪含量较高,南部育成品种营养体较大、植株高大、单株有效节数多且主茎单节最多荚数多,部分品种蛋白质含量相对较高;(3)采用主成分分析方法综合评价表明,吉育71的ZF值最高,综合性状表现最好,表型性状与ZF值相关分析结果显示,生育期、株高、主茎节数、地上部生物产量、收获指数、主茎荚数和主茎单节最多荚数等7个表型性状可作为春大豆种质资源综合评价指标。在大豆育种中应重视利用具有丰富遗传多样性的基因资源,在亲本选配时适当选择综合性状优良、育种性状优势互补的种质。  相似文献   

14.
Novel approaches in plant breeding for rhizosphere-related traits   总被引:1,自引:0,他引:1  
Selection of modern varieties has typically been performed in standardized, high fertility systems with a primary focus on yield. This could have contributed to the loss of plant genes associated with efficient nutrient acquisition strategies and adaptation to soil-related biotic and abiotic stresses if such adaptive strategies incurred a cost to the plant that compromised yield. Furthermore, beneficial interactions between plants and associated soil organisms may have been made obsolete by the provision of nutrients in high quantity and in readily plant available forms. A review of evidence from studies comparing older traditional varieties to modern high yielding varieties indeed showed that this has been the case. Given the necessity to use scarce and increasingly costly fertilizer inputs more efficiently while also raising productivity on poorer soils, it will be crucial to reintroduce desirable rhizosphere-related traits into elite cultivars. Traits that offer possibilities for improving nutrient acquisition capacity, plant–microbe interactions and tolerance to abiotic and biotic soil stresses in modern varieties were reviewed. Despite the considerable effort devoted to the identification of suitable donors and of genetic factors associated with these beneficial traits, progress in developing improved varieties has been slow and has so far largely been confined to modifications of traditional breeding procedures. Modern molecular tools have only very recently started to play a rather small role. The few successful cases reviewed in this paper have shown that novel breeding approaches using molecular tools do work in principle. When successful, they involved close collaboration between breeders and scientists conducting basic research, and confirmation of phenotypes in field tests as a ‘reality check’. We concluded that for novel molecular approaches to make a significant contribution to breeding for rhizosphere related traits it will be essential to narrow the gap between basic sciences and applied breeding through more interdisciplinary research that addresses rather than avoids the complexity of plant–soil interactions.  相似文献   

15.
Improving yield is a major objective for cotton breeding schemes, and lint yield and its three component traits (boll number, boll weight and lint percentage) are complex traits controlled by multiple genes and various environments. Association mapping was performed to detect markers associated with these four traits using 651 simple sequence repeats (SSRs). A mixed linear model including epistasis and environmental interaction was used to screen the loci associated with these four yield traits by 323 accessions of Gossypium hirsutum L. evaluated in nine different environments. 251 significant loci were detected to be associated with lint yield and its three components, including 69 loci with individual effects and all involved in epistasis interactions. These significant loci explain ∼ 62.05% of the phenotypic variance (ranging from 49.06% ∼ 72.29% for these four traits). It was indicated by high contribution of environmental interaction to the phenotypic variance for lint yield and boll numbers, that genetic effects of SSR loci were susceptible to environment factors. Shared loci were also observed among these four traits, which may be used for simultaneous improvement in cotton breeding for yield traits. Furthermore, consistent and elite loci were screened with −Log10 (P-value) >8.0 based on predicted effects of loci detected in different environments. There was one locus and 6 pairs of epistasis for lint yield, 4 loci and 10 epistasis for boll number, 15 loci and 2 epistasis for boll weight, and 2 loci and 5 epistasis for lint percentage, respectively. These results provided insights into the genetic basis of lint yield and its components and may be useful for marker-assisted breeding to improve cotton production.  相似文献   

16.
Genotype × environment (GE) interaction is a common characteristic for quantitative traits, and has been a subject of great concern for breeding programs. Simulation studies were conducted to investigate the effects of GE interaction on genetic response to marker-assisted selection (MAS). In our study we demonstrated that MAS is generally more efficient than phenotypic selection in the presence of GE interaction, and this trend is more pronounced for developing broadly adaptable varieties. The utilization of different QTL information dramatically influences MAS efficiency. When MAS is based on QTLs evaluated in a single environment, the causal QTL × environment (QE) interactions usually reduce general response across environments, and the reduction in the cumulative general response is a function of the proportion of QE interactions for the trait studied. However, MAS using QTL information evaluated in multiple environments not only yields higher general response, but the general response obtained is also reasonably robust to QE interactions. The total response achieved by MAS in a specific environment depends largely on the total heritability of traits and is slightly subject to relative changes between general heritability and GE interaction heritability. Two breeding strategies, breeding experiments conducted in one environment throughout and in two environments alternately, were also examined for the implementation of marker-based selection. It was thus concluded that plant breeders should be cautious to utilize QTL information from only one environment and execute breeding studies in another.  相似文献   

17.
Climate change threatens reduced crop production and poses major challenges to food security. The breeding of climate‐resilient crop varieties is increasingly urgent. Wild plant populations evolve to cope with changes in their environment due to the forces of natural selection. This adaptation may be followed over time in populations at the same site or explored by examining differences between populations growing in different environments or across an environmental gradient. Survival in the wild has important differences to the objective of agriculture to maximize crop yields. However, understanding the nature of adaptation in wild populations at the whole genome level may suggest strategies for crop breeding to deliver agricultural production with more resilience to climate variability.  相似文献   

18.
The process of selecting certain desirable traits for plant breeding may compromise other potentially important traits, such as defences against pests; however, specific phenotypic changes occurring over the course of domestication are unknown for most domesticated plants. Cranberry (Vaccinium macrocarpon) offers a unique opportunity to study such changes: its domestication occurred recently, and we have access to the wild ancestors and intermediate varieties used in past crosses. In order to investigate whether breeding for increased yield and fruit quality traits may indirectly affect anti-herbivore defences, the chemical defences have been examined of five related cranberry varieties that span the history of domestication against a common folivore, the gypsy moth (Lymantria dispar). Direct defences were assessed by measuring the performance of gypsy moth caterpillars and levels of phenolic compounds in leaves, and indirect defences by assaying induced leaf volatile emissions. Our results suggest that breeding in cranberry has compromised plant defences: caterpillars performed best on the derived NJS98-23 (the highest-yielding variety) and its parent Ben Lear. Moreover, NJS98-23 showed reduced induction of volatile sesquiterpenes, and had lower concentrations of the defence-related hormone cis-jasmonic acid (JA) than ancestral varieties. However, induced direct defences were not obviously affected by breeding, as exogenous JA applications reduced caterpillar growth and increased the amounts of phenolics independent of variety. Our results suggest that compromised chemical defences in high-yielding cranberry varieties may lead to greater herbivore damage which, in turn, may require more intensive pesticide control measures. This finding should inform the direction of future breeding programmes.  相似文献   

19.
The genetic relationship between vegetative growth at low temperatures and productivity was investigated for strawberries grown in controlled and field environments. Genotypes from 20 biparental crosses were grown in controlled environments with 11°, 14°, and 17 °C days, 11 °C nights, and 11-h daylength to simulate a range of winter growing conditions expected in mediterranean environments. Individual plants were scored for two initial runner traits and eight vegetative growth traits. Significant main effects of temperature and cross were detected for all growth chamber traits, and conservative estimates of the broad sense heritability (h2) for these traits were 0.10–0.28. None of the temperature x cross interaction effects were significant, suggesting that genetic potential for vegetative growth and vigor is expressed similarly at low and optimal growing temperatures. Highly significant genetic correlations were detected between many growth chamber trait pairs, indicating pleiotropic effects for the genes that condition these traits. Complementary field trials were established, and individual plants were scored for traits that describe yield, production pattern, and plant size. Significant negative genetic correlations were detected between traits that describe growth in the chambers and early production in the field trials, but genetic correlations between chamber growth traits and mid-season or total production were significantly positive and occasionally large. Several of the yield and field growth variables were genetically correlated to initial runner plant traits, suggesting that indirect selection using traits scored in the nursery can be used to improve yield and modify production pattern in the field.  相似文献   

20.
Yield increase: the contribution of plant biotechnology Modern plant breeding is facing increasing challenges to meet future needs caused by global climate changes, decreasing reserves of fossil fuels, an increasing world population as well as an aging society. Therefore, besides input traits, breeding aims focus on renewable resources and to ensure production of sufficient high quality food and feed. In particular, the world‐wide rising in energy demand harbors the risk that more and more agricultural land will be used for industrial purposes instead for food production. Therefore, breeding of highly productive crop plants for the production of valuable biological materials is of great importance. To optimize the production of valuable compounds a profound molecular and biochemical knowledge of the underlying metabolic pathways and the availability of technologies for the transfer of these findings into crop plants are needed. Plant biotechnology can be a key technology being important for deciphering molecular relationships as well as being required for the implementation of these findings into breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号