首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myriophora is the most species‐rich group of parasitoids that attack toxic, chemically defended millipedes in the superorder Juliformia and order Polydesmida—a resource that few insect predators and parasitoids are able to exploit. Worldwide, there are an estimated 200 species of Myriophora, with the majority of the diversity centred in the Neotropical region. The phylogeny of Myriophora is unknown, biogeographical patterns are not documented, and known host associations have not been assessed in a phylogenetic context. We provide the first phylogenetic study of the genus from a data set composed of 52 taxa primarily from the Neotropical region including 10 outgroups, 40 morphological characters, and molecular data from three mitochondrial (16S, COI and ND1) and one nuclear marker (AK). We find that Myriophora dispersed from the New World to the Old World in a single event before subsequently spreading to the Afrotropical region. The ancestral hosts reconstructed for Myriophora are the benzoquinone‐producing Juliformia, and this association has been retained in the Old World clade. In the Neotropical region, Myriophora that are associated with cyanide‐producing polydesmidan millipedes are confined to a single clade that shows remarkably little genetic variation between clearly morphologically diagnosable species.  相似文献   

2.
Polotow, D. & Brescovit, A. D. (2010). Phylogenetic relationships of the Neotropical spider genus Itatiaya (Araneae). —Zoologica Scripta, 40, 187–193. A cladistic analysis using parsimony under equal weights is applied to test the phylogenetic relationships of Itatiaya Mello‐Leitão, previously described in Ctenidae. The data matrix comprised 25 taxa scored for a total of 47 characters. The cladistic analysis yielded two equally parsimonious trees of 124 steps. The consensus of the two most parsimonious trees is used to discuss the phylogenetic relationships and justify taxonomic modifications. The results indicate that this genus is a representative of Zoropsidae, which is newly recorded from the Neotropical region. The monophyly of Itatiaya is supported by three non‐ambiguous synapomorphies and three homoplastic synapomorphies. A new diagnosis is provided for Itatiaya. Itatiaya pucupucu is placed as sister species to the remaining species of the genus. A polytomic clade composed of Itatiaya modesta, Itatiaya iuba, Itatiaya apipema and the clade formed by Itatiaya tacamby + Itatiaya pykyyra is supported by the presence of modified cylindrical gland spigots. Additionally, the male of I. pykyyra Polotow & Brescovit is described for the first time.  相似文献   

3.
Tertiary cormorant fossils (Aves: Phalacrocoracidae) from Late Oligocene deposits in Australia are described. They derive from the Late Oligocene – Early Miocene (26–24 Mya) Etadunna and Namba Formations in the Lake Eyre and Lake Frome Basins, South Australia, respectively. A new genus, Nambashag gen. nov. , with two new species ( Nambashag billerooensis sp. nov. , 30 specimens; Nambashag microglaucus sp. nov. , 14 specimens), has been established. Phylogenetic analyses based on 113 morphological and two integumentary characters indicated that Nambashag is the sister taxon to the Early Miocene Nectornis miocaenus of Europe and all extant phalacrocoracids. As Nambashag, Nectornis, and extant phalacrocoracids constitute a strongly supported clade sister to Anhinga species, the fossil taxa have been referred to Phalacrocoracidae. Sulids and Fregata were successive sister taxa to the Phalacrocoracoidea, i.e. phalacrocoracids + Anhinga. As phalacrocoracids lived in both Europe and Australia during the Late Oligocene and no older phalacrocoracid taxa are known, the biogeographical origin of cormorants remains unanswered. The phylogenetic relationships of extant taxa were not wholly resolved, but contrary to previous morphological analyses, considerable concordance was found with relationships recovered by recent molecular analyses. Microcarbo is sister to all other extant phalacrocoracids, and all Leucocarbo species form a well‐supported clade. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 277–314.  相似文献   

4.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   

5.
6.
7.
8.
Metalasia is a genus in tribe Gnaphalieae (Asteraceae), endemic to South Africa and with its main distribution in the Cape Floristic Region. The genus comprises 57 species and, with a number of closely related genera, it constitutes the ‘Metalasia clade’. A species‐level phylogenetic analysis is presented, based on DNA sequences from two nuclear (internal and external transcribed spacer: ITS, ETS) and two plastid (psbA‐trnH, trnL‐trnF) regions together with morphological data. Analyses combining molecular and morphological data attempt not only to resolve species interrelationships, but also to detect patterns in character evolution. Phylogenetic analyses corroborate our earlier study and demonstrate that Metalasia is formed of two equally sized, well‐supported sister groups, one of which is characterized by papillose cypselas. The results differ greatly from earlier hypotheses based on morphology alone, as few morphological characters support the phylogenetic patterns obtained. The two clades of Metalasia do, however, appear to differ in distribution, corresponding to the different rainfall regimes of South Africa. Analyses show a few taxa to be problematic; one example is the widely distributed M. densa which appears to be an intricate species complex. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 173–198.  相似文献   

9.
Cichlid fishes (family Cichlidae) are models for evolutionary and ecological research. Massively parallel sequencing approaches have been successfully applied to study relatively recent diversification in groups of African and Neotropical cichlids, but such technologies have yet to be used for addressing larger‐scale phylogenetic questions of cichlid evolution. Here, we describe a process for identifying putative single‐copy exons from five African cichlid genomes and sequence the targeted exons for a range of divergent (>tens of millions of years) taxa with probes designed from a single reference species (Oreochromis niloticus, Nile tilapia). Targeted sequencing of 923 exons across 10 cichlid species that represent the family's major lineages and geographic distribution resulted in a complete taxon matrix of 564 exons (649 549 bp), representing 559 genes. Maximum likelihood and Bayesian analyses in both species tree and concatenation frameworks yielded the same fully resolved and highly supported topology, which matched the expected backbone phylogeny of the major cichlid lineages. This work adds to the body of evidence that it is possible to use a relatively divergent reference genome for exon target design and successful capture across a broad phylogenetic range of species. Furthermore, our results show that the use of a third‐party laboratory coupled with accessible bioinformatics tools makes such phylogenomics projects feasible for research groups that lack direct access to genomic facilities. We expect that these resources will be used in further cichlid evolution studies and hope the protocols and identified targets will also be useful for phylogenetic studies of a wider range of organisms.  相似文献   

10.
The existence of the platyhelminth clade Adiaphanida—an assemblage comprising the well‐studied order Tricladida as well as two lesser known taxa, Prolecithophora and the obligate parasitic Fecampiida—is among the more surprising results of flatworm molecular systematics. Each of these three clades is itself largely well‐defined from a morphological point of view, although Adiaphanida at large, despite its strong support in molecular phylogenetic analyses, lacks known morphological synapomorphies. However, one taxon, the genus Genostoma, a parasite of the leptostracan crustacean Nebalia, rests uneasily within its current classification within the fecampiid family Genostomatidae; ultrastructural investigations on this taxon have uncovered a spermatogenesis reminiscent of Kalyptorhynchia, and a dorsal syncytium resembling the neodermatan tegument. Here, we provide molecular sequence data (nearly complete 18S and 28S rRNA) from a representative of Genostoma, with which we test hypotheses on the phylogenetic position of this taxon within Platyhelminthes, expanding upon a recently published phylum‐wide analysis, and applying novel alignment algorithms and substitution models. These analyses unequivocally position Genostoma as the sister group of Prolecithophora. However, even in taxon‐rich analyses, support for the position of the root of Adiaphanida is lacking, highlighting the need for new data types to study the phylogeny of this clade. Interestingly, our analyses also do not recover the monophyly of several taxa previously proposed, notably Continenticola within Tricladida and Protomonotresidae within Prolecithophora. In light of this phylogeny and the distinctive morphology (especially, spermatogenesis) of Genostoma, we advocate for a redefinition of the family Genostomatidae, outside of both Fecampiida and Prolecithophora, to encompass the members of this unique genus of parasites. Within Fecampiida, the family Piscinquilinidae fam. nov. is erected to accommodate the vertebrate‐parasitic Piscinquilinus, formerly Genostomatidae.  相似文献   

11.
Molecular phylogenetic analyses of representative Cutleria species using mitochondrial cox3, chloroplast psaA, psbA and rbcL gene sequences showed that C. cylindrica Okamura was not included in the clade composed of other Cutleria species including the generitype C. multifida (Turner) Greville and the related taxon Zanardinia typus (Nardo) P.C. Silva. Instead, C. cylindrica was sister to the clade composed of the two genera excluding C. cylindrica. Cutleria spp. have heteromophic life histories and their gametophytes are rather diverse in gross morphology, from compressed or cylindrical‐branched to fan‐shaped, whereas the sporophytes are rather similar. In contrast, the monotypic species Z. typus has an isomorphic life history and resembles fan‐shaped Cutleria in morphology. Morphological comparisons of these taxa revealed that C. cylindrica is morphologically distinct from other Cutleria spp. and Z. typus in having cylindrical gametophytes with multiseriate trichothallic filaments instead of uniseriate filaments (hairs) characteristic of Cutleriales (or Cutleriaceae, Tilopteridales), and in lacking rhizoidal filaments in the crustose sporophytes. Therefore, based on the molecular and morphological data, the establishment of a new genus Mutimo to accommodate C. cylindrica, and the new combination of M. cylindricus, is proposed.  相似文献   

12.
Since the separation of the Trachelomonas subgroup “Saccatae” into a new genus, Strombomonas Deflandre (1930), there has been some question as to its validity. Deflandre's separation was based on morphological characteristics such as the shape of the lorica, lack of a distinctive collar, possession of a tailpiece, lack of ornamentation, and ability to aggregate particles on the lorica. Recent molecular analyses indicated that the loricate taxa were monophyletic, but few species have been sampled. The LSU rDNA from eleven Strombomonas and thirty‐eight Trachelomonas species was sequenced to evaluate the monophyly of the two genera. Bayesian and maximum‐likelihood analyses found one monophyletic clade for each genus. The Trachelomonas clade was weakly supported, but had five strongly supported subclades. Morphological characters, such as lorica development and pellicle strip reduction, also supported separation of the genera. Lorica development in Strombomonas occurred from the anterior of the cell to the posterior, forming a shroud over the protoplast whereas in Trachelomonas, a layer of mucilage was excreted over the entire protoplast, followed by creation of the collar at the anterior end. Taxa from both genera underwent exponential strip reduction at the anterior and posterior poles. In Strombomonas, only one reduction was visible in the anterior pole, while in most Trachelomonas species, two reductions were visible. Likewise, Strombomonas species possessed two whorls of strip reduction in their posterior end compared to a single whorl of strip reduction in Trachelomonas species. The combined morphological and molecular data support the retention of Trachelomonas and Strombomonas as separate genera.  相似文献   

13.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

14.
In order to elucidate the phylogeny and evolutionary history of the Bacillariaceae we conducted a phylogenetic analysis of 42 species (sequences were determined from more than two strains of many of the Pseudo-nitzschia species) based on the first 872 base pairs of nuclear-encoded large subunit (LSU) rDNA, which include some of the most variable domains. Four araphid genera were used as the outgroup in maximum likelihood, parsimony and distance analyses. The phylogenetic inferences revealed the Bacillariaceae as monophyletic (bootstrap support ≥90%). A clade comprising Pseudo-nitzschia, Fragilariopsis and Nitzschia americana (clade A) was supported by high bootstrap values (≥94%) and agreed with the morphological features revealed by electron microscopy. Data for 29 taxa indicate a subdivision of clade A, one clade comprising Pseudo-nitzschia species, a second clade consisting of Pseudo-nitzschia species and Nitzschia americana, and a third clade comprising Fragilariopsis species. Pseudo-nitzschia as presently defined is paraphyletic and emendation of the genus is probably needed. The analyses suggested that Nitzschia is not monophyletic, as expected from the great morphological diversity within the genus. A cluster characterized by possession of detailed ornamentation on the frustule is indicated. Eighteen taxa (16 within the Bacillariaceae) were tested for production of domoic acid, a neurotoxic amino acid. Only P. australis, P. multiseries and P. seriata produced domoic acid, and these clustered together in all analyses. Since Nitzschia navis-varingica also produces domoic acid, but is distantly related to the cluster comprising the Pseudo-nitzschia domoic acid producers, it is most parsimonious to suggest that the ability of species in the Bacillariaceae to produce domoic acid has evolved at least twice.  相似文献   

15.
The genus Apalis is a member of the African forest warblers clade of the Cisticolidae. In view of its morphological diversity, it was suggested that this genus needs a taxonomic revaluation. For this, we sequenced a nuclear intron (myoglobin intron 2) and two mitochondrial protein‐coding genes (ND2 and ND3). The 2016 bp of sequence data obtained were aligned and subjected to parsimony, maximum likelihood and Bayesian inference. All three genes strongly reject the monophyly of Apalis but support the placing of all apalises within a broader clade of forest cisticolids which also includes Urolais. Within this forest clade, a subclade is defined which includes the genera Urolais, Schistolais and a well‐supported clade comprising three afromontane species, the Black‐collared Apalis Apalis pulchra, the Ruwenzori Apalis Apalis ruwenzorii and the African Tailorbird Artisornis. This subclade is sister to other members of Apalis, including the type species of the genus the Bar‐throated Apalis Apalis thoracica. A new generic name, Oreolais, is suggested for the Black‐collared and Ruwenzori Apalises.  相似文献   

16.
Aim We investigate spatial and temporal patterns of diversification within the Neotropical avifauna using the phylogenetic history of parrots traditionally belonging to the genus Pionopsitta Bonaparte 1854. This genus has long been of interest for those studying Neotropical biogeography and diversity, as it encompasses species that occur in most Neotropical forest areas of endemism. Location The Neotropical lowland forests in South and Central America. Methods Phylogenetic relationships were investigated for all species of the genus Pionopsitta and five other short‐tailed parrot genera using complete sequences of the mitochondrial genes cyt b and ND2 as well as 26 plumage characters. The resulting phylogeny was used to test the monophyly of the genus, investigate species limits, and as a framework for reconstructing their historical biogeography and patterns of diversification. Results We found that the genus Pionopsitta, as previously defined, is not monophyletic and thus the Chocó, Central American and Amazonian species will now have to be placed in the genus Gypopsitta. The molecular and morphological phylogenies are largely congruent, but disagree on the position of one of the Amazon basin taxa. Using molecular sequence data, we estimate that species within Gypopsitta diversified between 8.7 and 0.6 Ma, with the main divergences occurring between 3.3 and 6.4 Ma. These temporal results are compared to other taxa showing similar vicariance patterns. Main conclusions The results suggest that diversification in Gypopsitta was influenced mainly by geotectonic events, marine transgressions and river dynamics, whereas Quaternary glacial cycles of forest change seem to have played a minor role in the origination of the currently recognized species.  相似文献   

17.
Cyclocephaline scarabs, the second largest tribe of rhinoceros beetles, are important pollinators of early‐diverging angiosperm families in the tropics. The evolutionary history of cyclocephaline genera is poorly resolved and several genera are thought to be nonmonophyletic. We assess the monophyly of Mimeoma Casey, a group of Neotropical palm‐feeding scarabs, and its relationship to Cyclocephala with a phylogenetic analysis of 2899 bp of DNA sequence data and 18 morphological characters. All five species of Mimeoma were included in analyses along with species of Cyclocephala Dejean, Dyscinetus Harold and Tomarus Erichson as outgroup taxa. Nearly complete 28S, 12S and CO1 data were collected from 26 of 29 specimens, of which 16 samples were pinned, museum specimens. 28S data strongly support a nonmonophyletic Mimeoma; mitochondrial data (CO1 and 12S) suggest that Mimeoma species are nested within an apical clade of other Cyclocephala species; combined molecular and morphological data identify two strongly supported clades of Mimeoma species but do not support their sister relationship. Combined data show that Mimeoma species are nested within Cyclocephala, thus rendering Cyclocephala paraphyletic. Mimeoma is synonymized within Cyclocephala resulting in the following new combinations: Cyclocephala acuta Arrow n.comb ., Cyclocephala englemani (Ratcliffe) n.comb ., Cyclocephala maculata Burmeister n.comb ., Cyclocephala nigra (Endrödi) n.comb . and Cyclocephala signatoides Höhne n.comb . Our results demonstrate that pinned, museum specimens can be used to obtain DNA sequence data (particularly high‐copy gene regions) for evolutionary studies, and provide the first empirical support that host‐plant associations within cyclocephaline scarab clades are conserved at the plant family‐level.  相似文献   

18.
Small subunit (SSU) and large subunit (LSU) rDNA sequences have been commonly used to delineate the taxonomy and biogeography of the planktonic diatom genus Skeletonema, but the genes occur as multiple copies and are therefore not suitable for barcoding purposes. Here, we analyzed phylogenetic relationships of Skeletonema using the mitochondrial‐encoded cytochrome c oxidase I gene (cox1), as well as partial LSU rDNA (D1–D3) and SSU rDNA, to identify the factors that define species and to evaluate the utility of these three markers for this taxon. Twelve Skeletonema species were divided into six clades, I–VI, each of which comprised the same species by the three markers: clades I (S. japonicum, S. grethae, S. pseudocostatum, and S. tropicum), II (S. menzelii), III (S. dohrnii and S. marinoi), IV (S. costatum, S. potamos, and S. subsalsum), V (S. grevillei), and VI (S. ardens). However, the branching order among these clades was incongruent among the markers. In clade III, six S. marinoi strains had identical cox1 sequences. These S. marinoi strains branched along with S. dohrnii, except for strains from the Gulf of Naples, with high support in cox1. Species delimitation between S. dohrnii and S. marinoi was therefore not supported. In clade IV, S. costatum and S. subsalsum were robustly clustered, with S. potamos as a sister clade in the cox1 tree, not in the LSU and SSU trees. In clade II, cox1 also confirmed that S. menzelii includes three subclades potentially distinguishable from each other by morphological features. Cox1 proved to be the most useful marker for the identification of Skeletonema species because it gave a tree with highly supported clades, has sufficient variation within and among species, encodes a protein in a single copy, and requires relatively few primers.  相似文献   

19.
Understanding the systematics and evolution of clavicipitoid fungi has been greatly aided by the application of molecular phylogenetics. They are now classified in three families, largely driven by reevaluation of the morphologically and ecologically diverse genus Cordyceps. Although reevaluation of morphological features of both sexual and asexual states were often found to reflect the structure of phylogenies based on molecular data, many species remain of uncertain placement due to a lack of reliable data or conflicting morphological characters. A rigid, darkly pigmented stipe and the production of a Hirsutella-like anamorph in culture were taken as evidence for the transfer of the species Cordyceps cuboidea, Cordyceps prolifica, and Cordyceps ryogamiensis to the genus Ophiocordyceps. Data from ribosomal DNA supported these species as a single group, but were unable to infer deeper relationships in Hypocreales. Here, molecular data for ribosomal and protein coding DNA from specimens of Ophiocordyceps cuboidea, Ophiocordyceps ryogamiensis, Ophiocordyceps paracuboidea, Ophiocordyceps prolifica, Cordyceps ramosopulvinata, Cordyceps nipponica, and isolates of Polycephalomyces were combined with a broadly sampled dataset of Hypocreales. Phylogenetic analyses of these data revealed that these species represent a clade distinct from the other clavicipitoid genera. Applying the recently adopted single system of nomenclature, new taxonomic combinations are proposed for these species in the genus Polycephalomyces, which has been historically reserved for asexual or anamorphic taxa.  相似文献   

20.
The ants in the subfamily Amblyoponinae are an old, relictual group with an unusual suite of morphological and behavioural features. Adult workers pierce the integument of their larvae to imbibe haemolymph, earning them the vernacular name ‘dracula ants’. We investigate the phylogeny of this group with a data set based on 54 ingroup taxa, 23 outgroups and 11 nuclear gene fragments (7.4 kb). We find that the genus Opamyrma has been misplaced in this subfamily: it is a member of the leptanilline clade and sister to all other extant Leptanillinae. Transfer of Opamyrma to Leptanillinae renders the Amblyoponinae monophyletic. The enigmatic Afrotropical genus Apomyrma is sister to all other amblyoponines, and the latter cleave into two distinct and well‐supported clades, here termed POA and XMMAS. The POA clade, containing Prionopelta, Onychomyrmex and Amblyopone, is well resolved internally, and its structure supports synonymy of the genus Concoctio under Prionopelta ( syn.n. ). The XMMAS clade comprises two well‐supported groups: (i) a predominantly Neotropical clade, for which we resurrect the genus name Fulakora ( stat.r., stat.n. ), with junior synonyms Paraprionopelta ( syn.n. ) and Ericapelta ( syn.n. ); and (ii) the remaining taxa, or ‘core XMMAS’, which are manifested in our study as a poorly resolved bush of about a dozen lineages, suggesting rapid radiation at the time of their origin. Most of these XMMAS lineages have been assigned to the catch‐all genus Stigmatomma, but the more distinctive elements have been treated as separate genera (Xymmer, Mystrium, Myopopone and Adetomyrma). Resolution of basal relationships in the core XMMAS clade and reconfiguration of ‘Stigmatomma’ to restore monophyly of all named genera will require more extensive genetic data and additional morphological analysis. However, the genus Bannapone can be synonymized under Stigmatomma ( syn.n. ) because it is embedded within a clade that contains S. denticulatum, the type species of Stigmatomma. Divergence dating analysis indicates that crown Amblyoponinae arose in the mid‐Cretaceous, about 107 Ma (95% highest probability density: 93–121 Ma). The POA and XMMAS clades have estimated crown ages of 47 and 73 Ma, respectively. The initial burst of diversification in the core XMMAS clade occurred in the Late Paleocene/Early Eocene (50–60 Ma). Ancestral range reconstruction suggests that amblyoponines originated in the Afrotropics, and dispersed to the Indo‐Malayan region and to the New World. During none of these dispersal events did the ants break out of their cryptobiotic lifestyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号