首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functions of Beclin‐1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K‐III complex. Here, we describe a new role for Beclin‐1 in mitotic chromosome congression that is independent of the PI3K‐III complex and its role in autophagy. Beclin‐1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP‐E, CENP‐F and ZW10, and, consequently, the cells present severe problems in chromosome congression. Beclin‐1 associates with kinetochore microtubules and forms discrete foci near the kinetochores of attached chromosomes. We show that Beclin‐1 interacts directly with Zwint‐1—a component of the KMN (KNL‐1/Mis12/Ndc80) complex—which is essential for kinetochore–microtubule interactions. This suggests that Beclin‐1 acts downstream of the KMN complex to influence the recruitment of outer kinetochore proteins and promotes accurate kinetochore anchoring to the spindle during mitosis.  相似文献   

2.
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Using immunoelectron microscopy, CENP-E is shown to be an integral component of the kinetochore corona fibers that tether centromeres to the spindle. Immediately upon nuclear envelope fragmentation, an associated plus end motor trafficks cytoplasmic CENP-E toward chromosomes along astral microtubules that enter the nuclear volume. Before or concurrently with initial lateral attachment of spindle microtubules, CENP-E targets to the outermost region of the developing kinetochores. After stable attachment, throughout chromosome congression, at metaphase, and throughout anaphase A, CENP-E is a constituent of the corona fibers, extending at least 50 nm away from the kinetochore outer plate and intertwining with spindle microtubules. In congressing chromosomes, CENP-E is preferentially associated with (or accessible at) the stretched, leading kinetochore known to provide the primary power for chromosome movement. Taken together, this evidence strongly supports a model in which CENP-E functions in congression to tether kinetochores to the disassembling microtubule plus ends.  相似文献   

3.
The equal distribution of chromosomes during mitosis is critical for maintaining the integrity of the genome. Essential to this process are the capture of spindle microtubules by kinetochores and the congression of chromosomes to the metaphase plate . Polo-like kinase 1 (Plk1) is a mitotic kinase that has been implicated in microtubule-kinetochore attachment, tension generation at kinetochores, tension-responsive signal transduction, and chromosome congression . The tension-sensitive substrates of Plk1 at the kinetochore are unknown. Here, we demonstrate that human Nuclear distribution protein C (NudC), a 42 kDa protein initially identified in Aspergillus nidulans and shown to be phosphorylated by Plk1 , plays a significant role in regulating kinetochore function. Plk1-phosphorylated NudC colocalizes with Plk1 at the outer plate of the kinetochore. Depletion of NudC reduced end-on microtubule attachments at kinetochores and resulted in defects in chromosome congression at the metaphase plate. Importantly, NudC-deficient cells exhibited mislocalization of Plk1 and the Kinesin-7 motor CENP-E from prometaphase kinetochores. Ectopic expression of wild-type NudC, but not NudC containing mutations in the Plk1 phosphorylation sites, recovered Plk1 localization at the kinetochore and rescued chromosome congression. Thus, NudC functions as both a substrate and a spatial regulator of Plk1 at the kinetochore to promote chromosome congression.  相似文献   

4.
Through a functional genomic screen for mitotic regulators, we identified hepatoma up-regulated protein (HURP) as a protein that is required for chromosome congression and alignment. In HURP-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in the activation of the spindle checkpoint. Although these defects transiently delayed mitotic progression, HeLa cells initiated anaphase without resolution of these deficiencies. This bypass of the checkpoint arrest provides a tumor-specific mechanism for chromosome missegregation and genomic instability. Mechanistically, HURP colocalized with the mitotic spindle in a concentration gradient increasing toward the chromosomes. HURP binds directly to microtubules in vitro and enhances their polymerization. In vivo, HURP stabilizes mitotic microtubules, promotes microtubule polymerization and bipolar spindle formation, and decreases the turnover rate of the mitotic spindle. Thus, HURP controls spindle stability and dynamics to achieve efficient kinetochore capture at prometaphase, timely chromosome congression to the metaphase plate, and proper interkinetochore tension for anaphase initiation.  相似文献   

5.
In mitosis, centrosomes nucleate microtubules that capture the sister kinetochores of each chromosome to facilitate chromosome congression. In contrast, during meiosis chromosome congression on the acentrosomal spindle is driven primarily by movement of chromosomes along laterally associated microtubule bundles. Previous studies have indicated that septin2 is required for chromosome congression and cytokinesis in mitosis, we therefore asked whether perturbation of septin2 would impair chromosome congression and cytokinesis in meiosis. We have investigated its expression, localization and function during mouse oocyte meiotic maturation. Septin2 was modified by SUMO-1 and its levels remained constant from GVBD to metaphase II stages. Septin2 was localized along the entire spindle at metaphase and at the midbody in cytokinesis. Disruption of septins function with an inhibitor and siRNA caused failure of the metaphase I /anaphase I transition and chromosome misalignment but inhibition of septins after the metaphase I stage did not affect cytokinesis. BubR1, a core component of the spindle checkpoint, was labeled on misaligned chromosomes and on chromosomes aligned at the metaphase plate in inhibitor-treated oocytes that were arrested in prometaphase I/metaphase I, suggesting activation of the spindle assembly checkpoint. Taken together, our results demonstrate that septin2 plays an important role in chromosome congression and meiotic cell cycle progression but not cytokinesis in mouse oocytes.  相似文献   

6.
The mitotic kinesin centromere protein E (CENP-E) is an essential kinetochore component that directly contributes to the capture and stabilization of spindle microtubules by kinetochores. Although reduction in CENP-E leads to high rates of whole chromosome missegregation, neither its properties as a microtubule-dependent motor nor how it contributes to the dynamic linkage between kinetochores and microtubules is known. Using single-molecule assays, we demonstrate that CENP-E is a very slow, highly processive motor that maintains microtubule attachment for long periods. Direct visualization of full-length Xenopus laevis CENP-E reveals a highly flexible 230-nm coiled coil separating its kinetochore-binding and motor domains. We also show that full-length CENP-E is a slow plus end-directed motor whose activity is essential for metaphase chromosome alignment. We propose that the highly processive microtubule-dependent motor activity of CENP-E serves to power chromosome congression and provides a flexible, motile tether linking kinetochores to dynamic spindle microtubules.  相似文献   

7.
The kinetochore plays important roles in cell cycle progression. Interactions between chromosomes and spindle microtubules allow chromosomes to congress to the middle of the cell and to segregate the sister chromatids into daughter cells in mitosis. The chromosome passenger complex (CPC), composed of the Aurora B kinase and its regulatory subunits INCENP, Survivin, and Borealin, plays multiple roles in these chromosomal events. In the genome of the silkworm, Bombyx mori, which has holocentric chromosomes, the CPC components and their molecular interactions were highly conserved. In contrast to monocentric species, however, the silkworm CPC co-localized with the chromatin-driven spindles on the upper side of prometaphase chromosomes without forming bipolar mitotic spindles. Depletion of the CPC by RNAi arrested the cell cycle progression at prometaphase and disrupted the microtubule network of the chromatin-driven spindles. Interestingly, depletion of mitotic centromere-associated kinesin (MCAK) recovered formation of the microtubule network but did not overcome the cell cycle arrest at prometaphase. These results suggest that the CPC modulates the chromatin-induced spindle assembly and metaphase congression of silkworm holocentric chromosomes.  相似文献   

8.
Centromere protein E (CENP-E) is a highly elongated kinesin that transports pole-proximal chromosomes during congression in prometaphase. During metaphase, it facilitates kinetochore–microtubule end-on attachment required to achieve and maintain chromosome alignment. In vitro CENP-E can walk processively along microtubule tracks and follow both growing and shrinking microtubule plus ends. Neither the CENP-E–dependent transport along microtubules nor its tip-tracking activity requires the unusually long coiled-coil stalk of CENP-E. The biological role for the CENP-E stalk has now been identified through creation of “Bonsai” CENP-E with significantly shortened stalk but wild-type motor and tail domains. We demonstrate that Bonsai CENP-E fails to bind microtubules in vitro unless a cargo is contemporaneously bound via its C-terminal tail. In contrast, both full-length and truncated CENP-E that has no stalk and tail exhibit robust motility with and without cargo binding, highlighting the importance of CENP-E stalk for its activity. Correspondingly, kinetochore attachment to microtubule ends is shown to be disrupted in cells whose CENP-E has a shortened stalk, thereby producing chromosome misalignment in metaphase and lagging chromosomes during anaphase. Together these findings establish an unexpected role of CENP-E elongated stalk in ensuring stability of kinetochore–microtubule attachments during chromosome congression and segregation.  相似文献   

9.
Kinetochores may perform several functions at mitosis and meiosis including: (a) directing anaphase chromosome separation, (b) regulating prometaphase alignment of the chromosomes at the spindle equator (congression), and/or (c) capturing and stabilizing microtubules. To explore these functions in vivo, autoimmune sera against the centromere/kinetochore complex are microinjected into mouse oocytes during specific phases of first or second meiosis, or first mitosis. Serum E.K. crossreacts with an 80-kD protein in mouse cells and detects the centromere/kinetochore complex in permeabilized cells or when microinjected into living oocytes. Chromosome separation at anaphase is not blocked when these antibodies are microinjected into unfertilized oocytes naturally arrested at second meiotic metaphase, into eggs at first mitotic metaphase, or into immature oocytes at first meiotic metaphase. Microtubule capture and spindle reformation occur normally in microinjected unfertilized oocytes recovering from cold or microtubule disrupting drugs; the chromosomes segregate correctly after parthenogenetic activation. Prometaphase congression is dramatically influenced when antikinetochore/centromere antibodies are introduced during interphase or in prometaphase-stage meiotic or mitotic eggs. At metaphase, these oocytes have unaligned chromosomes scattered throughout the spindle with several remaining at the poles; anaphase is aberrant and, after division, karyomeres are found in the polar body and oocyte or daughter blastomeres. Neither nonimmune sera, diffuse scleroderma sera, nor sham microinjections affect either meiosis or mitosis. These results suggest that antikinetochore/centromere antibodies produced by CREST patients interfere with chromosome congression at prometaphase in vivo.  相似文献   

10.
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. the yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not been reported. We investigated Kip3''s role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.Key words: Cin8, cluster, GFP-tubulin, kinesin-5, kinesin-8, kinetochore, Kip3, metaphase, microtubule, mitosis, spindle  相似文献   

11.
BACKGROUND: The accurate alignment of chromosomes at the spindle equator is fundamental for the equal distribution of the genome in mitosis and thus for the genetic integrity of eukaryotes. Although it is well established that chromosome movements are coupled to microtubule dynamics, the underlying mechanism is not well understood. RESULTS: By combining RNAi-depletion experiments with in vitro biochemical assays, we demonstrate that the human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression in mammalian tissue culture cells. We show that in vitro Kif18A is a slow plus-end-directed kinesin that possesses microtubule depolymerizing activity. Notably, Kif18A like its yeast ortholog Kip3p depolymerizes longer microtubules more quickly than shorter ones. In vivo, Kif18A accumulates in mitosis where it localizes close to the plus ends of kinetochore microtubules. The depletion of Kif18A induces aberrantly long mitotic spindles and loss of tension across sister kinetochores, resulting in the activation of the Mad2-dependent spindle-assembly checkpoint. Live-cell microscopy studies revealed that in Kif18A-depleted cells, chromosomes move at reduced speed and completely fail to align at the spindle equator. CONCLUSIONS: These studies identify Kif18A as a dual-functional kinesin and a key component of chromosome congression in mammalian cells.  相似文献   

12.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

13.
Li Y  Yu W  Liang Y  Zhu X 《Cell research》2007,17(8):701-712
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.  相似文献   

14.
During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1—the budding yeast ortholog of CLIP-170—is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle–dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase–anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore–microtubule dynamics for correct kinetochore positioning and chromosome congression.  相似文献   

15.
Centromere protein E, CENP-E, is a kinetochore-associated kinesin-7 that establishes the microtubule-chromosome linkage and transports monooriented chromosomes to the spindle equator along kinetochore fibers of already bioriented chromosomes. As a processive kinesin, CENP-E uses a hand-over-hand mechanism, yet a number of studies suggest that CENP-E exhibits mechanistic differences from other processive kinesins that may be important for its role in chromosome congression. The results reported here show that association of CENP-E with the microtubule is unusually slow at 0.08 μM(-1) s(-1) followed by slow ADP release at 0.9 s(-1). ATP binding and hydrolysis are fast with motor dissociation from the microtubule at 1.4 s(-1), suggesting that CENP-E head detachment from the microtubule, possibly controlled by phosphate release, determines the rate of stepping during a processive run because the rate of microtubule gliding corresponds to 1.4 steps/s. We hypothesize that the unusually slow CENP-E microtubule association step favors CENP-E binding of stable microtubules over dynamic ones, a mechanism that would bias CENP-E binding to kinetochore fibers.  相似文献   

16.
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression.  相似文献   

17.
We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.  相似文献   

18.
Error-free chromosome segregation requires that all chromosomes biorient on the mitotic spindle. The motor protein Centromere-associated protein E (CENP-E) facilitates chromosome congression by mediating the lateral sliding of sister chromatids along existing K-fibers, while the mitotic kinase Aurora B detaches kinetochore–microtubule interactions that are not bioriented. Whether these activities cooperate to promote efficient chromosome biorientation and timely anaphase onset is not known. We here show that the chromosomes that fail to congress after CENP-E depletion displayed high centromeric Aurora B kinase activity. This activity destabilized spindle pole proximal kinetochore–microtubule interactions resulting in a checkpoint-dependent mitotic delay that allowed CENP-E-independent chromosome congression, thus reducing chromosome segregation errors. This shows that Aurora B keeps the mitotic checkpoint active by destabilizing kinetochore fibers of polar chromosomes to permit chromosome congression in CENP-E-compromised cells and implies that this kinase normally prevents pole proximal syntelic attachments to allow CENP-E-mediated congression of mono-oriented chromosomes.  相似文献   

19.
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. The yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not beenreported. We investigated Kip3's role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.  相似文献   

20.
Prometaphase PtK1 cells are treated with low concentrations of sucrose in order to analyze its effects on kinetochore structure, microtubule (MT) associations with the developing kinetochore and chromosome congression. Prometaphase cells treated with 0.15M sucrose slows chromosome congression, yet chromosomes form a metaphase configuration. However, 0.2M sucrose treatment prevents chromosome congression and affects some of the kinetochore MT linkages with the kinetochore, resulting in loss of chromosome congression. We use time lapse video microscopy and ultrastructural analysis to correlate changes in the linkages in the kinetochore MTs and the kinetochore to explain these findings. It appears hyperosmotic shock treatment can produce non-functional linkages between kinetochore MTs and kinetochores such that chromosome congression is affected. When non-functional linkages are formed, the presence of both a corona and matrix-like material is also present, proximal to the kinetochore. The role of this material and its organization at the klnetochore is discussed in its relation to generating mitotic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号