共查询到20条相似文献,搜索用时 0 毫秒
1.
Max Gassmann Federico Focher Hans-Jrg Buhk Elena Ferrari Silvio Spadari Ulrich Hübscher 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1988,951(2-3)
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64–66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39–57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase α and δ as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase α and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase α holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789–4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase α is blocked with the DNA polymerase α specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase δ can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication. 相似文献
2.
Kodavati Manohar Prashant Khandagale Shraddheya Kumar Patel Jugal Kishor Sahu Narottam Acharya 《The Journal of biological chemistry》2022,298(2)
DNA polymerase eta (Polη) is a unique translesion DNA synthesis (TLS) enzyme required for the error-free bypass of ultraviolet ray (UV)-induced cyclobutane pyrimidine dimers in DNA. Therefore, its deficiency confers cellular sensitivity to UV radiation and an increased rate of UV-induced mutagenesis. Polη possesses a ubiquitin-binding zinc finger (ubz) domain and a PCNA-interacting-protein (pip) motif in the carboxy-terminal region. The role of the Polη pip motif in PCNA interaction required for DNA polymerase recruitment to the stalled replication fork has been demonstrated in earlier studies; however, the function of the ubz domain remains divisive. As per the current notion, the ubz domain of Polη binds to the ubiquitin moiety of the ubiquitinated PCNA, but such interaction is found to be nonessential for Polη''s function. In this study, through amino acid sequence alignments, we identify three classes of Polη among different species based on the presence or absence of pip motif or ubz domain and using comprehensive mutational analyses, we show that the ubz domain of Polη, which intrinsically lacks the pip motif directly binds to the interdomain connecting loop (IDCL) of PCNA and regulates Polη''s TLS activity. We further propose two distinct modes of PCNA interaction mediated either by pip motif or ubz domain in various Polη homologs. When the pip motif or ubz domain of a given Polη binds to the IDCL of PCNA, such interaction becomes essential, whereas the binding of ubz domain to PCNA through ubiquitin is dispensable for Polη''s function. 相似文献
3.
Rémy Bétous Marie‐Jeanne Pillaire Laura Pierini Siem van der Laan Emma Ohl‐Séguy Caixia Guo Naoko Niimi Petr Grúz Takehiko Nohmi Errol Friedberg Christophe Cazaux Domenico Maiorano Jean‐Sébastien Hoffmann 《The EMBO journal》2013,32(15):2172-2185
Formation of primed single‐stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR‐mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA‐mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y‐family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9‐1‐1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9‐1‐1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells. 相似文献
4.
Xeroderma pigmentosum variant (XP-V) cells lack the damage-specific DNA polymerase eta and have normal excision repair but show defective DNA replication after UV irradiation. Previous studies using cells transformed with SV40 or HPV16 (E6/E7) suggested that the S-phase response to UV damage is altered in XP-V cells with non-functional p53. To investigate the role of p53 directly we targeted p53 in normal and XP-V fibroblasts using short hairpin RNA. The shRNA reduced expression of p53, and the downstream cell cycle effector p21, in control and UV irradiated cells. Cells accumulated in late S phase after UV, but after down-regulation of p53 they accumulated earlier in S. Cells in which p53 was inhibited showed ongoing genomic instability at the replication fork. Cells exhibited high levels of UV induced S-phase gammaH2Ax phosphorylation representative of exposed single strand regions of DNA and foci of Mre11/Rad50/Nbs1 representative of double strand breaks. Cells also showed increased variability of genomic copy numbers after long-term inhibition of p53. Inhibition of p53 expression dominated the DNA damage response. Comparison with earlier results indicates that in virally transformed cells cellular targets other than p53 play important roles in the UV DNA damage response. 相似文献
5.
Kimberly N. Herman Shannon Toffton Scott D. McCulloch 《Journal of biochemical and molecular toxicology》2014,28(12):568-577
Elevated levels of reactive oxygen species (ROS) can be induced by exposure to various chemicals and radiation. One type of damage in DNA produced by ROS is modification of guanine to 7,8‐dihydro‐8‐oxoguanine (8‐oxoG). This particular alteration to the chemistry of the base can inhibit the replication fork and has been linked to mutagenesis, cancer, and aging. In vitro studies have shown that the translesion synthesis polymerase, DNA polymerase η (pol η), is able to efficiently bypass 8‐oxoG in DNA. In this study, we wanted to investigate the mutagenic effects of oxidative stress, and in particular 8‐oxoG, in the presence and absence of pol η. We quantified levels of oxidative stress, 8‐oxoG levels in DNA, and nuclear mutation rates. We found that most of the 8‐oxoG detected were localized to the mitochondrial DNA, opposed to the nuclear DNA. We also saw a corresponding lack of mutations in a nuclear‐encoded gene. This suggests that oxidative stress’ primary mutagenic effects are not predominantly on genomic DNA. 相似文献
6.
Asami Hishiki Toshiyuki Shimizu Tomo Hanafusa Haruo Ohmori Mamoru Sato Hiroshi Hashimoto 《Acta Crystallographica. Section F, Structural Biology Communications》2008,64(10):954-956
Human DNA polymerase ι (Polι) is one of the Y‐family DNA polymerases involved in translesion synthesis (TLS), which allows continued replication at damaged DNA templates. Polι has a noncanonical PCNA‐interacting protein box (PIP‐box) within an internal region of the protein. Polι activity is stimulated by PCNA binding through the noncanonical PIP‐box. To clarify the interaction of PCNA with the noncanonical PIP‐box of Polι, PCNA and a Polι peptide carrying the noncanonical PIP‐box complex have been cocrystallized. The crystal belongs to space group C2, with unit‐cell parameters a = 167.1, b = 68.7, c = 90.0 Å, β = 95.1°. Structural analysis by molecular replacement is in progress. 相似文献
7.
Sebastian Klinge Rafael Núez-Ramírez Oscar Llorca Luca Pellegrini 《The EMBO journal》2009,28(13):1978-1987
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases. 相似文献
8.
Calf thymus DNA polymerase alpha-primase, human placenta DNA polymerase alpha-primase and human placenta DNA primase synthesized oligoriboadenylates of a preferred length of 2-10 nucleotides and multimeric oligoribonucleotides of a modal length of about 10 monomers on a poly(dT) template. The dimer and trimer were the prevalent products of the polymerization reaction. However, only the oligonucleotides from heptamers to decamers were elongated efficiently by DNA polymerase alpha. 相似文献
9.
Iván Del Olmo Leticia López‐González Maria M. Martín‐Trillo José M. Martínez‐Zapater Manuel Piñeiro Jose A. Jarillo 《The Plant journal : for cell and molecular biology》2010,61(4):623-636
We have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of DNA polymerase epsilon (ε), AtPOL2a. The esd7‐1 mutation causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7‐1 is a hypomorphic allele whereas knockout alleles displayed an embryo‐lethal phenotype. The esd7 early flowering phenotype requires functional FT and SOC1 proteins and might also be related to the misregulation of AG and AG‐like gene expression found in esd7. Genes involved in the modulation of chromatin structural dynamics, such as LHP1/TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7. In fact a molecular interaction between the carboxy terminus of ESD7 and TFL2 was demonstrated in vitro. Besides, fas2 mutations suppressed the esd7 early flowering phenotype and ICU2 was found to interact with ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7‐1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin‐mediated cellular memory. 相似文献
10.
Yong-Yu Liu Tie-Yan Han Armando E. Giuliano Shinichi Ichikawa Yoshio Hirabayashi Myles C. Cabot 《Experimental cell research》1999,252(2):464
Ceramide, as a second messenger, initiates one of the major signal transduction pathways in tumor necrosis factor-α (TNF-α)-induced apoptosis. Glucosylceramide synthase (GCS) catalyzes glycosylation of ceramide and produces glucosylceramide. By introduction of the GCS gene, cytotoxic resistance to TNF-α has been conferred in human breast cancer cells. MCF-7/GCS-transfected cells expressed 4.1-fold higher levels of GCS activity and exhibited a 15-fold (P < 0.0005) greater EC50 for TNF-α, compared with the parental MCF-7 cell line. DNA fragmentation and DNA synthesis studies showed that TNF-α had little influence on the induction of apoptosis or on growth arrest in MCF-7/GCS cells, compared to MCF-7 cells. These studies reveal that TNF-α resistance in MCF-7/GCS cells is closely related to ceramide hyperglycosylation, a hallmark of this transfected cell line, and resistance was not aligned with changes in TNF receptor 1 expression. This work demonstrates that GCS, which catalyzes ceramide glycosylation, potentiates cytotoxic resistance to TNF-α. 相似文献
11.
Kaori Lyama Saori Ono Koichi Kuwano Masahiro Ohishi Hideki Shigematsu Sumio Arai 《Microbiology and immunology》1996,40(12):907-914
Mycoplasma penetrans isolated from clinical specimens of AIDS patients showed potent activity in tumor necrosis factor alpha (TNFα) production in THP-1, U937 and J22HL60 cell lines, and in the enhancement of HIV-1 replication in a dormantly-infected J22HL60 cell line as compared with the activities of other mycoplasmas. Both activities were found in the methanol layer but not in the chloroform layer of the membrane extracted by the Bligh-Dyer method. TNFα production was observed in the peritoneal macrophages from both lipopolysaccharide-responsive and -unresponsive mouse strains, and was not inhibited by polymyxin B. The induction of TNFα production and enhancement of HIV-1 replication were strongly inhibited by Concanavalin A-Sepharose. The inhibitory effect of Concanavalin A-Sepharose was partially prevented by sugars in the order methyl-α-D -mannopyranoside and methyl-α-D -glucopyranoside but not methyl-α-D -galactopyranoside. Anti-human TNFα antibody, however, did not reduce the activity of the methanol layer to enhance HIV-1 replication, suggesting that the methanol layer could enhance HIV-1 replication directly. These results suggest that the carbohydrate derived from M. penetrans might be responsible for the progression of HIV-1 infection. 相似文献
12.
Most of the DNA polymerase α activity, bound to the heat-stabilized nuclear matrix prepared from HeLa S3 cells, was released as a matrix extract by sonication. When the extract was centrifuged in a 5–20 per cent linear sucrose gradient no definite peaks of activity could be identified. Most of the activity sedimented to the bottom of the tube under all the conditions tested, whilst the remaining activity was associated with matrix fragments of various and irregular size. No 10 S complexes, containing polymerase activity, were seen after incubation of the extract for 16 h before centrifugation. Other solubilization procedures (i.e. treatment of the matrix with chelating agents, high pH associated with reducing agents, ionic and nonionic detergents) failed to produce release of matrix-bound DNA polymerase α activity. In contrast, we released 10 S complexes, containing polymerase activity, from the matrix prepared from nuclei not exposed to heat. We conclude that a 37°C incubation of isolated nuclei before extraction with 2 M NaCl and DNase I digestion causes DNA polymerase α to bind to the nuclear matrix in a form that cannot subsequently be released as discrete components, at variance with previous results obtained with the matrix prepared from regenerating rat liver. 相似文献
13.
In vitro replication assays for detection and quantification of bypass of UV-induced DNA photoproducts were used to compare the capacity of extracts prepared from different human cell lines to replicate past the cis,syn cyclobutane thymine dimer ([c,s]TT). The results demonstrated that neither nucleotide excision repair (NER) nor mismatch repair (MMR) activities in the intact cells interfered with measurements of bypass replication efficiencies in vitro. Extracts prepared from HeLa (NER- and MMR-proficient), xeroderma pigmentosum group A (NER-deficient), and HCT116 (MMR-deficient) cells displayed similar capacity for translesion synthesis, when the substrate carried the site-specific [c,s]TT on the template for the leading or the lagging strand of nascent DNA. Extracts from xeroderma pigmentosum variant cells, which lack DNA polymerase eta, were devoid of bypass activity. Bypass-proficient extracts as a group (n=16 for 3 extracts) displayed higher efficiency (P=0.005) for replication past the [c,s]TT during leading strand synthesis (84+/-22%) than during lagging strand synthesis (64+/-13%). These findings are compared to previous results concerning the bypass of the (6-4) photoproduct [Biochemistry 40 (2001) 15215] and analyzed in the context of the reported characteristics of bypass DNA polymerases implicated in translesion synthesis of UV-induced DNA lesions. Models to explain how these enzymes might interact with the DNA replication machinery are considered. An alternative pathway of bypass replication, which avoids translesion synthesis, and the mutagenic potential of post-replication repair mechanisms that contribute to the duplication of the human genome damaged by UV are discussed. 相似文献
14.
Pre‐initiation complex assembly functions as a molecular switch that splits the Mcm2‐7 double hexamer
下载免费PDF全文

Initiation of chromosomal DNA replication in eukaryotes involves two steps: licensing and firing. In licensing, a core component of the replicative helicase, the Mcm2–7 complex, is loaded onto replication origins as an inactive double hexamer, which is activated in the firing step by firing factors. A reaction intermediate called the pre‐initiation complex (pre‐IC) has been proposed to assemble transiently during firing, but the existence of the pre‐IC has not yet been confirmed. Here, we show, by systematic chromatin immunoprecipitation, that a distinct intermediate that fits the definition of the pre‐IC assembles during firing in the budding yeast Saccharomyces cerevisiae. Pre‐IC assembly is observed in the absence of Mcm10, one of the firing factors, and is mutually dependent on all the firing factors whose association to replication origins is triggered by cyclin‐dependent kinase. In the pre‐IC, the Mcm2–7 double hexamer is separated into single hexamers, as in the active helicase. Our data indicate that pre‐IC assembly functions as an all‐or‐nothing molecular switch that splits the Mcm2–7 double hexamer. 相似文献
15.
16.
Dimitrios Polychronopoulos Magdalena Foltman Arturo Calzada Karim Labib 《The EMBO journal》2009,28(19):2992-3004
The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2‐7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2‐7 to other replisome components. Here, we show that the RPC associates with DNA polymerase α that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2‐7 to DNA polymerase α. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2‐7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process. 相似文献
17.
Shonen Yoshida Rika Suzuki Shigeo Masaki Osamu Koiwai 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1983,741(3):348-357
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA. 相似文献
18.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed. 相似文献
19.