首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Estimating the timing of flower bud formation in plants is essential to identify environmental factors that regulate floral transition. The presence of winter dormancy between the initiation of flowers and anthesis, characteristic of most trees in the temperate forests, hampers accurate estimation of the timing of floral transition. To overcome this difficulty, expression levels of flowering-time genes could be used as indicators of the timing of floral transition. Here, we evaluated the usefulness of molecular markers in estimating the timing of floral transition in Fagus crenata, a deciduous tree that shows intermittent and synchronized flowering at the population level. We selected FLOWERING LOCUS T (FT) as a candidate molecular marker and quantified the expression levels of its ortholog in F. crenata (FcFT). Subsequently, we analyzed the relationship between morphogenetic changes that occur between the vegetative state of the buds and the initiation of floral organs, and compared the FcFT expression levels in reproductive and vegetative buds, collected from spring to autumn. FcFT expression in leaves peaked at least two weeks before the morphological changes associated with flowering were visible in the buds in late July. FcFT expression levels were significantly higher in the reproductive buds than in the vegetative buds in July. These results suggest that the FcFT expression in July is a reliable indicator of the timing and occurrence of floral transition. This study highlights the utility of molecular tools in unraveling reproductive dynamics in plants, in combination with ecological and physiological approaches.  相似文献   

3.
4.
Switchgrass (Panicum virgatum L.), a perennial warm season bunchgrass native to North America, has been a target in the U.S. as a renewable bioenergy crop because of its ability to produce moderate to high biomass yield on marginal soils. Delaying flowering can increase vegetative biomass production by allowing prolonged growth before switching to the reproductive phase. Despite the identification of flowering time as a biomass trait in switchgrass, the molecular regulatory factors involved in controlling floral transition are poorly understood. Here we identified PvFT1, PvAPL1‐3 and PvSL1, 2 as key flowering regulators required from floral transition initiation to development of floral organs. PvFT1 expression in leaves is developmentally regulated peaking at the time of floral transition, and diurnally regulated with peak at approximately 2 h into the dark period. Ectopic expression of PvFT1 in Arabidopsis, Brachypodium and switchgrass led to extremely early flowering, and activation of FT downstream target genes, confirming that it is a strong activator of flowering in switchgrass. Ectopic expression of PvAPL1‐3 and PvSL1, 2 in Arabidopsis also activated early flowering with distinct floral organ phenotypes. Our results suggest that switchgrass has conserved flowering pathway regulators similar to Arabidopsis and rice.  相似文献   

5.
The switch from vegetative to reproductive growth is extremely stable even if plants are only transiently exposed to environmental stimuli that trigger flowering. In the photoperiodic pathway, a mobile signal, florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana, induces flowering. Because FT activity in leaves is not maintained after transient photoperiodic induction, the molecular basis for stable floral commitment is unclear. Here, we show that Polycomb-group (Pc-G) proteins, which mediate epigenetic gene regulation, maintain the identity of inflorescence and floral meristems after floral induction. Thus, plants with reduced Pc-G activity show a remarkable increase of cauline leaves under noninductive conditions and floral reversion when shifted from inductive to noninductive conditions. These phenotypes are almost completely suppressed by loss of FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE, which both delay flowering and promote vegetative shoot identity. Upregulation of FLC in Pc-G mutants leads to a strong decrease of FT expression in inflorescences. We find that this activity of FT is needed to prevent floral reversion. Collectively, our results reveal that floral meristem identity is at least partially maintained by a daylength-independent role of FT whose expression is indirectly sustained by Pc-G activity.  相似文献   

6.
The transition to flowering is the most dramatic phase change in flowering plants and is crucial for reproductive success. A complex regulatory network in plants has evolved to perceive and integrate the endogenous and environmental signals. These signals perceived, including day length and temperature, converge to regulate FLOWERING LOCUS T (FT), which encodes a mobile stimulus required for floral induction in Arabidopsis. Despite the discovery of modulation of FT messenger RNA (mRNA) expression by ambient temperature, whether the trafficking of FT protein is controlled in response to changes in growth temperature is so far unknown. Here, we show that FT transport from companion cells to sieve elements is controlled in a temperature‐dependent manner. This process is mediated by multiple C2 domain and transmembrane region proteins (MCTPs) and a soluble N‐ethylmaleimide‐sensitive factor protein attachment protein receptor (SNARE). Our findings suggest that ambient temperatures regulate both FT mRNA expression and FT protein trafficking to prevent precocious flowering at low temperatures and ensure plant reproductive success under favorable environmental conditions.  相似文献   

7.
8.
9.
High temperature-induced bolting of lettuce is undesirable agriculturally, making it important to find the mechanism governing the transition from vegetative to reproductive growth. FLOWERING LOCUS T (FT) genes play important roles in the induction of flowering in several plant species. To clarify floral induction in lettuce, we isolated the FT gene (LsFT) from lettuce. Sequence analysis and phylogenetic relationships of LsFT revealed considerable homology to FT genes of Arabidopsis, tomato, and other species. LsFT induced early flowering in transgenic Arabidopsis, but was not completely effective compared to AtFT. LsFT mRNA was abundant in the largest leaves under flowering-inducible conditions (higher temperatures). Gene expression was correlated with flower differentiation of the shoot apical meristem. Our results suggest that LsFT is a putative FT homolog in lettuce that regulates flower transition, similar to its homolog in Arabidopsis. This is the first information on the lettuce floral gene for elucidating regulation of the flowering transition in lettuce.  相似文献   

10.
During their life cycle, flowering plants must experience a transition from vegetative to reproductive growth. Here, we report that double mutations in the Arabidopsis thaliana IMITATION SWITCH (AtISWI) genes, CHROMATIN REMODELING11 (CHR11) and CHR17, and the plant‐specific DDT‐domain containing genes, RINGLET1 (RLT1) and RLT2, resulted in plants with similar developmental defects, including the dramatically accelerated vegetative‐to‐reproductive transition. We demonstrated that AtISWI physically interacts with RLTs in preventing plants from activating the vegetative‐to‐reproductive transition early by regulating several key genes that contribute to flower timing. In particular, AtISWI and RLTs repress FT, SEP1, SEP3, FUL, and SOC1, but promote FLC in the leaf. Furthermore, AtISWI and RLTs may directly repress FT and SEP3 through associating with the FT and SEP3 loci. Our study reveals that AtISWI and RLTs represent a previously unrecognized genetic pathway that is required for the maintenance of the plant vegetative phase.  相似文献   

11.
12.
In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.  相似文献   

13.
The life cycles of plants are characterized by two major life history transitions—germination and the initiation of flowering—the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after‐ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.  相似文献   

14.
15.
Elucidating the physiological mechanisms of the irregular yet concerted flowering rhythm of mass flowering tree species in the tropics requires long‐term monitoring of flowering phenology, exogenous and endogenous environmental factors, as well as identifying interactions and dependencies among these factors. To investigate the proximate factors for floral initiation of mast seeding trees in the tropics, we monitored the expression dynamics of two key flowering genes, meteorological conditions and endogenous resources over two flowering events of Shorea curtisii and Shorea leprosula in the Malay Peninsula. Comparisons of expression dynamics of genes studied indicated functional conservation of FLOWERING LOCUS T (FT) and LEAFY (LFY) in Shorea. The genes were highly expressed at least 1 month before anthesis for both species. A mathematical model considering the synergistic effect of cool temperature and drought on activation of the flowering gene was successful in predicting the observed gene expression patterns. Requirement of both cool temperature and drought for floral transition suggested by the model implies that flowering phenologies of these species are sensitive to climate change. Our molecular phenology approach in the tropics sheds light on the conserved role of flowering genes in plants inhabiting different climate zones and can be widely applied to dissect the flowering processes in other plant species.  相似文献   

16.
Floral initiation is orchestrated by systemic floral activators and inhibitors. This remote‐control system may integrate environmental cues to modulate floral initiation. Recently, FLOWERING LOCUS T (FT) was found to be a florigen. However, the identity of systemic floral inhibitor or anti‐florigen remains to be elucidated. Here we show that Arabidopsis thaliana CENTRORADIALIS homologue (ATC), an Arabidopsis FT homologue, may act in a non‐cell autonomous manner to inhibit floral initiation. Analysis of the ATC null mutant revealed that ATC is a short‐day‐induced floral inhibitor. Cell type‐specific expression showed that companion cells and apex that express ATC are sufficient to inhibit floral initiation. Histochemical analysis showed that the promoter activity of ATC was mainly found in vasculature but under the detection limit in apex, a finding that suggests that ATC may move from the vasculature to the apex to influence flowering. Consistent with this notion, Arabidopsis seedling grafting experiments demonstrated that ATC moved over a long distance and that floral inhibition by ATC is graft transmissible. ATC probably antagonizes FT activity, because both ATC and FT interact with FD and affect the same downstream meristem identity genes APETALA1, in an opposite manner. Thus, photoperiodic variations may trigger functionally opposite FT homologues to systemically influence floral initiation.  相似文献   

17.
FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine‐binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT‐homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long‐day and short‐day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcellular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild‐type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft‐10 mutants partially rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT‐homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding.  相似文献   

18.
19.
An early flowering mutant of Arabidopsis, elf32-D was isolated from activation tagging screening. The mutant flowered earlier than wild type under both long day and short day conditions. The mutant phenotype was caused by overexpression of a Kunitz-type trypsin inhibitor gene (AtKTI1). The expression of AtKTI1 was detected in leaves, flowers, siliques and roots. In the vegetative state, no change of flowering integrator gene expression was observed for AtKTI1 overexpressing plants. In contrast, at the reproductive stage, its overexpression resulted in the down-regulation of FLC, a strong floral repressor which integrates the autonomous and vernalization pathways and also the up-regulation of FT and AP1, which are downstream floral integrator genes. It is probable that the AtKTI1 overexpression inhibits components of the flowering signaling pathway upstream of FLC, eventually regulating expression of FLC, or causing perturbations in plant metabolism and thus indirectly affecting flowering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号