首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≥0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≥0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha−1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher’s diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial > sandstone hill > kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities.  相似文献   

2.
Western Amazonia is known to harbour some of Earth's most diverse forests, but previous floristic analyses have excluded peatland forests which are extensive in northern Peru and are among the most environmentally extreme ecosystems in the lowland tropics. Understanding patterns of tree species diversity in these ecosystems is important both for quantifying beta‐diversity in this region, and for understanding determinants of diversity more generally in tropical forests. Here we explore patterns of tree diversity and composition in two peatland forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over a large area of northern Peru. We place our results in a regional context by making comparisons with three other major forest types: terra firme forests (29 plots), white‐sand forests (23 plots) and seasonally‐flooded forests (11 plots). Peatland forests had extremely low (within‐plot) alpha‐diversity compared with the other forest types that were sampled. In particular, peatland pole forests had the lowest levels of tree diversity yet recorded in Amazonia (20 species per 500 stems, Fisher's alpha 4.57). However, peatland pole forests and palm swamps were compositionally different from each other as well as from other forest types in the region. Few species appeared to be peatland endemics. Instead, peatland forests were largely characterised by a distinctive combination of generalist species and species previously thought to be specialists of other habitats, especially white‐sand forests. We suggest that the transient nature and extreme environmental conditions of Amazonian peatland ecosystems have shaped their current patterns of tree composition and diversity. Despite their low alpha‐diversity, the unique combination of species found in tree communities in Amazonian peatlands augment regional beta‐diversity. This contribution, alongside their extremely high carbon storage capacity and lack of protection at national level, strengthens their status as a conservation priority.  相似文献   

3.
A rapidly increasing effort to merge functional community ecology and phylogenetic biology has increased our understanding of community assembly. However, studies using both phylogenetic‐ and trait‐based methods have been mainly conducted in old‐growth forests, with fewer studies in human‐disturbed communities, which play an increasingly important role in providing ecosystem services as primary forests are degraded. We used data from 18 1‐ha plots in tropical old‐growth forests and secondary forests with different disturbance histories (logging and shifting cultivation) and vegetation types (tropical lowland and montane forests) on Hainan Island, southern China. The distributions of 11 functional traits were compared among these six forest types. We used a null model approach to assess the effects of disturbance regimes on variation in response and effect traits and community phylogenetic structure across different stem sizes (saplings, treelets, and adult trees) and spatial scales (10–50 m). We found significant differences in the distribution of functional traits in highly disturbed lowland sites versus other forest types. Many individuals in highly disturbed lowland sites were deciduous, spiny, with non‐fleshy fruits and seeds dispersed passively or by wind, and low SLA. The response traits of coexisting species were clustered in all sites except for highly disturbed lowland sites where evenness was evident. There were different distributions of effect traits for saplings and treelets among different forest types but adult trees showed stronger clustering of trait values with increasing spatial scale among all forest types. Phylogenetic clustering predominated across all size classes and spatial scales in the highly disturbed lowland sites, and evenness in other forest types. High disturbance can lead to abiotic filtering, generating a community dominated by closely related species with disturbance‐adapted traits, where biotic interactions play a relatively minor role. In lightly disturbed and old growth forests, multiple processes simultaneously drive the community assembly, but biotic processes dominate at the fine scale.  相似文献   

4.
Many studies analyzing the relative contribution of soil properties versus distance‐related processes on plant species composition have focused on lowland tropical forests. Very few have investigated two forest types simultaneously, to contrast ecological processes that assemble the communities. This study analyses—at the landscape scale—the relative contribution of soil and distance on lowland and submontane tropical forests, which co‐occur in two reserves of the Azuero peninsula (Panama). Floristic inventories and soil sampling were conducted in 81 0.1‐ha plots clustered in 27 sites, and data were analyzed using Mantel tests, variance partitioning and non‐metric multidimensional scaling. The largest differences in floristic composition occurred between reserves in both forest types. Soil variation and geographic distance were important determinants of floristic composition, but their effects were highly correlated; together they explained 7–25 percent and 46–50 percent of the variation in lowland and submontane forests, respectively. Soil variables that had the best correlations with floristic composition were iron, zinc, and silt content in lowland, and calcium, copper, iron, potassium, magnesium, phosphorus, zinc, and sand content in submontane forests. The studied forests showed a high beta diversity that seems to be related primarily with soils and, secondarily, with dispersal limitation and stochastic events. The results reveal a response of tree assemblages to environmental gradients, which are particularly conspicuous in Panama. The effects of limited dispersal seem to be more important in submontane than in lowland forests, probably as a result of higher isolation.  相似文献   

5.
M Pfeiffer  D Mezger 《PloS one》2012,7(7):e40729
Biodiversity assessment of tropical taxa is hampered by their tremendous richness, which leads to large numbers of singletons and incomplete inventories in survey studies. Species estimators can be used for assessment of alpha diversity, but calculation of beta diversity is hampered by pseudo-turnover of species in undersampled plots. To assess the impact of unseen species, we investigated different methods, including an unbiased estimator of Shannon beta diversity that was compared to biased calculations. We studied alpha and beta diversity of a diverse ground ant assemblage from the Southeast Asian island of Borneo in different types of tropical forest: diperocarp forest, alluvial forest, limestone forest and heath forests. Forests varied in plant composition, geology, flooding regimes and other environmental parameters. We tested whether forest types differed in species composition and if species turnover was a function of the distance between plots at different spatial scales. As pseudo-turnover may bias beta diversity we hypothesized a large effect of unseen species reducing beta diversity. We sampled 206 ant species (25% singletons) from ten subfamilies and 55 genera. Diversity partitioning among the four forest types revealed that whereas alpha species richness and alpha Shannon diversity were significantly smaller than expected, beta-diversity for both measurements was significantly higher than expected by chance. This result was confirmed when we used the unbiased estimation of Shannon diversity: while alpha diversity was much higher, beta diversity differed only slightly from biased calculations. Beta diversity as measured with the Chao-Sørensen or Morisita-Horn Index correlated with distance between transects and between sample points, indicating a distance decay of similarity between communities. We conclude that habitat heterogeneity has a high influence on ant diversity and species turnover in tropical sites and that unseen species may have only little impact on calculation of Shannon beta diversity when sampling effort has been high.  相似文献   

6.
Vascular epiphytes represent a highly diverse element of tropical rain forests, but they depend strongly on the structure and taxonomic composition of their tree communities. For conservation planning, it is therefore critical to understand the effect of host tree characteristics on epiphyte species richness in natural and anthropogenically transformed vegetation. Our study compares the effect of human land‐use on epiphyte diversity based on 220 study plots in a lowland rain forest and an Andean cloud forest in western Ecuador. We evaluate the relevance of host tree size and taxonomic identity for epiphyte species richness in contiguous primary forests, forest fragments, isolated remnant trees (IRTs), and secondary forests. At both study sites, epiphyte diversity was highest in primary forests, and it was lowest on IRTs and in secondary forests. Epiphyte species numbers of forest fragments were significantly reduced compared with the contiguous primary forest at the lowland study site, but not in the cloud forest area. Host tree size was a core predictor among secondary forests, but it had less significance within other habitat types. Taxonomic identity of the host trees also explained up to 61 percent of the variation in epiphyte diversity, especially for IRTs. The structural and taxonomic composition of the tree community in anthropogenically transformed habitat types proved to be fundamental to epiphyte diversity. This highlights the importance of deliberate selection of tree species for reforestation in conservation programs and the possible negative effects of selective logging in primary forests. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

7.
研究群落构建机制是群落生态学的一个重要目标, 群落动态过程中的构建规律对于了解群落演替机理有重要的作用。该文以海南岛刀耕火种干扰后自然恢复的10 hm 2热带低地雨林为研究对象, 通过比较不同恢复阶段的次生林(15年、30年和60年)和老龄林在幼苗、幼树和成年树群落的物种组成, 揭示次生演替过程中的群落构建规律。研究结果表明, 老龄林中不同径级群落的物种多样性及不同径级间的物种相似度显著高于各恢复阶段的次生林, 但优势种在群落中的比例低于各恢复阶段的次生林。随着自然恢复过程的进行, 次生林群落物种组成与老龄林的相似性也逐渐增大, 支持演替平衡理论。所有恢复阶段样地中幼苗的个体、物种丰富度和基于多度涵盖估计量(ACE)都低于幼树和成年树群落, 幼苗层物种组成与幼树、成年树也有较大差异, 说明新增到幼苗群落可能是一个难于预测的过程。研究结果说明了确定过程和随机过程共同决定了次生演替的群落构建。  相似文献   

8.
In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco-morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales.  相似文献   

9.
Abstract. Ecological and biogeographic analyses of the tropical rain forest in south Yunnan were made using data from seventeen sample plots and floristic inventories of about 1000 species of seed plants. The rain forest is shown to be a type of true tropical rain forest because it has almost the same profile, physiognomic characteristics, species richness per unit area, numbers of individuals in each tree species and diameter classes of trees as classic lowland tropical rain forests. As the area is at the northern margin of monsoonal tropics, the rain forest differs from equatorial lowland rain forests in having some deciduous trees in the canopy layer, fewer megaphanaerophytes and epiphytes but more species of lianas as well as more species of microphylls. In its floristic composition, about 80% of total families. 94% of total genera and more than 90% of total species are tropical, of which about 38% of genera and 74% of species are tropical Asian. Furthermore, the rain forest has not only almost the same families and genera, but also the same families rank in the top ten both in species richness and in dominance of stems, as lowland forests in southeast Asia. It is indisputable that the flora of the rain forest is part of the tropical Asian flora. However, most of the tropical families and genera have their northern limits in south Yunnan and most have their centre of species diversity in Malesia. More strictly tropical families and genera have relatively lower species richness and importance compared with lowland rain forests in tropical southeast Asia. Thus, the flora also shows characteristics of being at the margin of the tropics. Based mainly on physiognomy and floristic composition the tropical rain forest of Yunnan is classified into two types, i.e. seasonal rain forest and wet seasonal rain forest, the latter is further divided into two subtypes, i.e. mixed rain forest and dipterocarp rain forest. From analysis of geographic elements it is also shown that the tropical rain forest of Yunnan occurs at a geographical nexus with its flora coming mainly from four sources, i.e. Malesia, south Himalayas, Indochina and China.  相似文献   

10.
Human-modified forested landscapes are prevalent in the tropics, and the role of complex mosaics of diverse vegetation types in biodiversity conservation remains poorly understood. Demographic traits and the spatial pattern of biodiversity are essential information when considering proper forest management and land use strategies. We compared the tree community structure (stem density, basal area, tree diversity, abundance of rare, endemic, and upper-layer trees, and species composition) and the forest dynamics (mortality, recruitment rate, and increments of basal area, and above- and below-ground biomass) of 39–46 plots among five dominant forest types: young and old fallows, rubber plantations, and fragmented and old-growth forests in Sarawak, Malaysia. We also explored how tree diversity was distributed across different spatial scales using additive partitioning of diversity. Swidden cultivation and rubber plantations showed decreased stem density, basal area, tree diversity, abundance of rare, endemic, and upper-layer trees, and increments of above- and below-ground biomass, which affected tree mortality, dominant trees, and species composition. Little distinction in species composition was observed among young and old fallows and rubber plantations, indicating a relatively quick recovery of the tree community in the early stages. The highest diversity was found among forest types, indicating that the whole forested landscape comprises a suitable scale for tree biodiversity conservation in the region. Our results suggest that although fragmented and old-growth forests have an irreplaceable role and a high priority in conserving biodiversity and sustaining the function of the forest ecosystem, secondary forests may also have a reinforcing role in maintaining tree diversity in the region, especially under the current circumstances in which a large portion of the landscape is human-modified and faces an increasing threat from the expansion of oil palm plantations.  相似文献   

11.
Beta diversity may be determined by dispersal limitation, environment, and phylogeographic history. Our objective was to advance the understanding of plant species turnover in rain forests in northern South America and determine which factors are affecting species beta diversity. We evaluated the relative effect of environmental variables (i.e., soil, climate, fragmentation, and flooding frequency) and dispersal limitation (i.e., geographical distance and resistance distance due mountain barriers) on tree beta diversity in 32 1‐ha lowland forest plots. We found that tree species turnover was better explained by environmental distance than by geographical distance. Although soil conditions and flooding regime were good predictors of tree species composition, almost half of the variance remained unexplained. In our study system, the eastern Andean ridge had no significant effect on plant beta diversity, probably because of its young age in relation to the phylogeny. Our results provide support for the importance of environmental factors and suggest a more restricted role of dispersal limitation. Therefore, we advise that conservation strategies of lowland trees should consider specific forest types (e.g., seasonally flooded vs. terra firme, as well as piedmont vs. central Amazonian forests).  相似文献   

12.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

13.
Recent studies have described a new tropical lowland forest type in the Guianas, the tropical lowland cloud forest. It is characterized by an enriched epiphytic species diversity particularly for bryophytes compared to common lowland rainforest, and is facilitated by frequent early morning fog events in valley locations. While the increase in epiphytic species diversity in lowland cloud forests has been documented, uncertainties remain as to (1) how this small scale variation in water supply is shaping the functional diversity of epiphytic components in lowland forests, and (2) whether information on functional group composition of epiphytes might aid in discerning these cloud forests from the common lowland rainforest. We compare the distribution of functional groups of epiphytes across height zones in lowland cloud forest and lowland rain forest of French Guiana in terms of biomass, cover as well as the composition of bryophyte life-forms. Both forests differed in functional composition of epiphytes in the canopy, in particular in the mid and outer canopy, with the cloud forest having a higher biomass and cover of bryophytes and vascular epiphytes as well as a richer bryophyte life-form composition. Bryophyte life-forms characteristic for cloud forests such as tail, weft and pendants were almost lacking in the canopies of common rain forest whereas they were frequent in lowland cloud forests. We suggest that ground-based evaluation of bryophyte life-form composition is a straightforward approach for identifying lowland cloud forest areas for conservation, which represent biodiversity hotspots in tropical lowland forests.  相似文献   

14.
The threatened forest habitats of the tropical Andes are reportedly being modified and destroyed 30% faster than their lowland tropical counterparts, but impacts on the hyper-diverse resident avifauna have received little systematic study. We present a baseline analysis of the effects of habitat modification on birds in a lower montane forest landscape in Ecuador, comparing avian community composition in landscape elements subjected to different levels of human modification: primary forest, secondary forest, edge habitat and agricultural land. We use data from a point count survey of 300 counts at 150 sites to test whether community composition and density of birds with different reported habitat preferences and foraging strategies change among landscape elements. Species richness and diversity were lowest in agricultural land, but on some measures, equally low in primary forest. Richness and diversity peaked in secondary forest and edge habitat, but ordination and density analysis revealed clear differences in their species composition. While secondary forest contained mostly forest-preferring species, edge habitat harboured a mix of forest and open-land birds. There was a clearly structured gradient in species composition across landscape elements, with densities of habitat specialists, foraging guilds and families varying considerably from primary forest to agricultural land. Agricultural land was characterised by an assemblage of widespread, abundant species very different from that in core forest habitats. As such, while the majority of montane forest birds appear resilient to a certain level of habitat modification, they cannot persist, and are displaced, where forest has been cleared outright. We argue that, for Andean montane forests, preservation of mature secondary forest offers flexibility in supplementing preserved primary forest areas to provide sufficient habitat for the persistence of this incredibly diverse but severely threatened bird community.  相似文献   

15.
海南岛霸王岭两种典型热带季雨林群落特征   总被引:7,自引:0,他引:7  
刘万德  臧润国  丁易 《生态学报》2009,29(7):3465-3476
热带季雨林为海南岛的隐域性植被类型,分布在与热带低地雨林相似的海拔范围但生境条件较差的局部地段,在旱季其大部分的乔木种类和个体都会落叶.海南岛霸王岭林区分布着海南岛最为典型且大都保存较为完好的热带季雨林原始林,按照其优势树种可划分为海南榄仁(Terminalia hainanensis)季雨林和枫香(Liquidambar formosana)季雨林两种群落类型.通过对霸王岭林区两种典型的热带季雨林老龄林群落的样地调查,比较分析了其物种组成、大小结构、多样性、季相变化等特征.结果表明:海南岛热带季雨林群落中物种优势度明显,具有明显的标志种--海南榄仁和枫香.海南榄仁群落具有较高的灌木物种丰富度、个体多度及较低的乔木物种丰富度、个体多度和多样性;海南榄仁群落在小径级和低高度级中具有较高的植物个体多度,同时在低高度级中具有较低的物种丰富度,但其它径级和高度级两个群落物种丰富度及个体多度差异均不显著;除灌木落叶物种丰富度海南榄仁群落显著高于枫香群落外,其余各生长型落叶物种丰富度及个体多度两个群落之间均无显著差异;在具刺木质藤本物种丰富度和个体多度上海南榄仁群落与枫香群落差异不显著,但乔木、灌木和木本植物具刺物种丰富度及个体多度海南榄仁群落均显著高于枫香群落.总体来看,海南榄仁群落比枫香群落的季雨林特征明显,是海南岛最为典型的季雨林群落类型.  相似文献   

16.
Plant habitat associations are well documented in Bornean lowland tropical forests, but few studies contrast the prevalence of associations across sites. We examined habitat associations and community composition of Dipterocarpaceae trees in two contrasting Bornean lowland mixed dipterocarp forests separated by approximately 100 km: Andulau (uniform topography, lower altitudinal range, sandy soils) and Belalong (highly dissected topography, higher altitudinal range, clay‐rich soils). Dipterocarpaceae trees ≥ 1 cm diameter at breast height (dbh) were censused in 20‐m wide belt transects established along topographic gradients at each site. Dipterocarp density, evenness, species richness, and diversity were significantly higher at Andulau than Belalong. Significant site associations (with either Andulau or Belalong) were detected for 19 (52%) of the 37 dipterocarp species tested. Dipterocarpaceae community composition at Belalong correlated with soil nutrient concentrations as well as measures of vegetation and topographic structure, but community composition at Andulau correlated with fewer habitat variables. Within each site, dipterocarp density, species richness, and diversity were consistently higher on ridges than in slopes and valleys. Significant within‐site associations to topographic habitats were less common at Andulau (10% of species tested) than at Belalong (15%). We conclude that edaphic and other environmental factors influence dipterocarp community composition at a local scale, and are more important drivers of community structure in the more variable environment at Belalong. Species richness and diversity of dipterocarps on small plots, however, were higher at Andulau, suggesting that factors other than environmental heterogeneity contribute to contrasts in dipterocarp tree species richness at small scales.  相似文献   

17.
Sonali Saha 《Ecography》2003,26(1):80-86
The regressive succession model hypothesizes tropical savanna-woodlands to be a degraded stage of primary deciduous forests. Species diversity, richness and evenness of woody species in savanna-woodlands, secondary deciduous forests and mature deciduous forests of central India were compared to test if the regressive succession explained pattern in species richness, diversity, functional diversity and basal area. At the plot scale (0.1 ha) secondary deciduous forests and savanna-woodlands had similar species diversity, a pattern not consistent with the regressive model of deciduous forest succession, and mature deciduous forests had greater species diversity and richness (p<0.05). When examined at a larger scale or community scale by pooling all plots within a community type, the trend in diversity persisted even with greater effort allocated to sampling of secondary deciduous forests. Species richness at the community scale was greatest in secondary deciduous forest as expected from species area relationship. The communities shared 28 woody species but the species composition was significantly different between the communities. I suggest that conservation of tropical deciduous forests based on regressive succession model is problematic.  相似文献   

18.
滇南勐宋热带山地雨林的物种多样性与生态学特征   总被引:21,自引:0,他引:21       下载免费PDF全文
 研究了鲜为人知的滇南勐宋地区的原始山地雨林植被, 根据分布生境、群落结构和种类组成特征,可将该山地雨林区分为沟谷和山坡两个类型, 分别定义为八蕊单室茱萸(Mastixia euonymoides)-大萼楠(Phoebe megacalyx)林和云南拟单性木兰(Parachmeria yunnanensis)-云南裸花(Gymnanthes remota)林。该山地雨林的外貌仍以单叶、革质、全缘、中叶为主的常绿中、小高位芽植物组成为特征,层间木质藤本植物仍较丰富,草本高位芽植物和附生植物丰富,但板根和茎花现象少见,属于热带山地垂直带上低山雨林或山地雨林植被类型。与该地区的典型热带季节雨林和赤道热带雨林相比, 勐宋的山地雨林群落中的大、中高位芽植物和藤本高位芽植物比例相对减少, 小、矮高位芽植物和草本高位芽植物比例相对增加,单叶、革质、非全缘叶和小叶比例相对增加,板根现象少见。与中国热带北缘-南亚热带地区(季风)常绿阔叶林比较, 勐宋的山地雨林有较多的附生植物和草本高位芽植物,相对较少的小高位芽植物和矮高位芽植物,小叶比例亦较少,非全缘叶和革质叶比例相对较低。故勐宋山地雨林是滇南热带北缘山地的一种较湿润生境的植被类型, 与所谓的季风常绿阔叶林不同。在物种多样性上,勐宋热带山地雨林在单位面积植物种数上并不比该地区的热带季节雨林低, 物种多样性指数与低丘季节雨林相当,比沟谷季节雨林低, 明显高于季风常绿阔叶林。  相似文献   

19.
望天树林与相近类型植被结构的比较研究   总被引:20,自引:0,他引:20  
  相似文献   

20.
Plantations are established for a variety of purposes including wood production, soil and water conservation, and carbon sequestration. However, their implications for species diversity are considerably debated. To assess restoration effect of species diversity in plantations after 50 years’ natural restoration, understory herb species diversity of Chinese pine (Pinus tabulaeformis) plantations were characterized and compared with secondary growth oak (Quercus wutaishanica) forests by additive partitioning across three different nested spatial scales (subplot, plot and site scales) in the middle of the Loess Plateau, northwestern China. Whether these two forest types demonstrate different structuring processes was also examined by quantifying the relative contributions of space and the environment on community composition. Overall, the two forests displayed similar accumulation of species diversity across spatial scales. The contribution of species diversity components increased with the spatial scale, and both forests displayed lower alpha diversity at the subplot scale but higher beta diversity at the plot and site scales. There was no significant difference in alpha or beta diversity between the two forests at any of the three scales, but in species compositions at the subplot and plot scales (p < 0.05). The diversity of both forest types were simultaneously governed by environmental and spatial processes, with the exception of a greater contribution of each component in the secondary growth oak forests, but both forests were dominated by environmental processes. Our study highlight the significant role of spatial scales in assessing the result of biodiversity restoration of plantations. These results suggest that pine plantations function in a similar manner as secondary growth oak forests for understory herb diversity, albeit with different community compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号