首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Using a transmission electron microscopy‐based approach, this study details the striking similarities between Cryptosporidium parvum and the gregarines during in vitro axenic development at high ultra‐structural resolution. C. parvum zoites displayed three unusual regions within uninucleated parasites: epimerite‐like, protomerite‐like, and the cell body; these regions exhibited a high degree of morphological similarity to gregarine‐like trophozoites. The presence of a mucron‐like bulging structure at the side of the free ovoid gregarine‐like zoites was observed after 2 h of cultivation. An irregular pattern of epicytic‐like folds were found to cover the surface of the parasites 24 h postcultivation. Some extracellular stages were paired in laterocaudal or side‐side syzygy, with the presence of a fusion zone between some of these zoites. The present findings are in agreement with phylogenetic studies that have proposed a sister relationship with gregarines. Cryptosporidium appears to exhibit tremendous variety in cell structure depending on the surrounding environment, thereby mimicking the “primitive” gregarines in terms of the co‐evolution strategy between the parasites and their environments. Given this degree of similarity, different aspects of the evolutionary biology of Cryptosporidium need to be examined, considering the knowledge gained from the study of gregarines.  相似文献   

2.
BACKGROUND INFORMATION: Different in vitro models, based on co-culturing techniques, can be used to investigate the behaviour of cell types, which are relevant for human wound and soft-tissue healing. Currently, no model exists to describe the behaviour of fibroblasts and microvascular endothelial cells under wound-specific conditions. In order to develop a suitable in vitro model, we characterized co-cultures comprising NHDFs (normal human dermal fibroblasts) and HDMECs (human dermal microvascular endothelial cells). The CCSWMA (co-culture scratch wound migration assay) developed was supported by direct visualization techniques in order to investigate a broad spectrum of cellular parameters, such as migration and proliferation activity, the differentiation of NHDFs into MFs (myofibroblasts) and the expression of endothelin-1 and ED-A-fibronectin (extra domain A fibronectin). The cellular response to hypoxia treatment, as one of the crucial conditions in wound healing, was monitored. RESULTS: The comparison of the HDMEC-NHDF co-culture with the respective mono-cultures revealed that HDMECs showed a lower proliferation activity when co-cultured, but their number was stable throughout a period of 48 h. NHDFs in co-culture were slightly slower at proliferating than in the mono-culture. The MF population was stable for 48 h in the co-culture, as well as in NHDF mono-culture. Co-cultures and HDMEC mono-cultures were characterized by a slower migration rate than NHDF mono-cultures. Hypoxia decreased both cell proliferation and migration in the mono-cultures, as well as in the co-cultures, indicating the general suitability of the assay. Exclusively, in co-cultures well-defined cell clusters comprising HDMECs and MFs formed at the edges of the in vitro wounds. CONCLUSIONS: On the basis of these results, the CCSWMA developed using co-cultures, including HDMECs, NHDFs and MFs, proved to be an effective tool to directly visualize cellular interaction. Therefore, it will serve in the future to evaluate the influence of wound-healing-related factors in vitro, as shown for hypoxia in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号