首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
The Old World bat family Miniopteridae comprises only the genus Miniopterus, which includes 20 currently recognized species from the Afrotropical realm and 15 species from Eurasia and Australasia. Since 2003, the number of recognized Miniopterus species has grown from 19 to 35, with most newly described species endemic to Madagascar and the Comoros Archipelago. We investigated genetic variation, phylogenetic relationships and clade membership in Miniopterus focusing on Afrotropical taxa. We generated mitochondrial cytochrome-b (cyt-b) and nuclear intron data (five genes) from 352 vouchered individuals collected at 78 georeferenced localities. Including 99 additional mitochondrial sequences from GenBank, we analysed a total of 25 recognized species. Mitochondrial genetic distances among cyt-b-supported clades averaged 9.3%, representing as many as five undescribed species. Multilocus coalescent delimitation strongly supported the genetic isolation of eight of nine tested unnamed clades. A large number of sampled clades in sub-Saharan Africa are distributed wholly or partly in East Africa (nine of 13 clades), suggesting that Miniopterus diversity has been grossly underestimated. Although 25 of 27 cyt-b and 23 of 25 nuclear gene tree lineages from the Afrotropics were strongly supported as monophyletic, a majority of deep nodes were poorly resolved in phylogenetic analyses. Long terminal branches subtending short backbone internodes in the phylogenetic analyses suggest a rapid radiation model of diversification. This hypothesis needs to be tested using more phylogenetically informative data.  相似文献   

2.
Sheared principal component analysis of 40 morphometric characteristics measured for 146 individuals and relative frequencies of pigmentation patterns scored for 980 individuals of the least madtom Noturus hildebrandi, a diminutive catfish endemic to eastern lowland drainages of the Mississippi Embayment region of North America, suggested a clinal pattern of morphological variation extending across the range from north to south. DNA sequence data representing 90 individuals from the mitochondrial gene cytochrome b (cytb) analysed using Bayesian phylogenetic methods recovered four major haplotype clades, suggestive of a high degree of isolation by drainage. Individual gene trees of cytb and four additional nuclear loci as well as trees based on concatenated datasets of these genes consistently recovered a cryptic lineage of individuals from the Hatchie River drainage that is morphologically indistinguishable from surrounding populations. Gene‐tree analyses failed to recover a monophyletic N. hildebrandi with respect to Noturus baileyi. A coalescence‐based species tree analysis, however, did recover N. hildebrandi monophyly with high support, suggesting that relationships reflected in individual gene trees and concatenated datasets are in part artefacts of incomplete lineage sorting or an ancient introgressive event. Results are consistent with the hypothesis of an ancient connection between the Hatchie and Tennessee River systems. Current subspecific designations are of limited utility as they reflect morphological variation and are not entirely consistent with phylogeny. Discrepancies between the pattern of variation observed in the morphological and molecular data may be explained by recent local adaptation to individual stream conditions that masks deeper evolutionary divergences.  相似文献   

3.
The California vole, Microtus californicus, restricted to habitat patches where water is available nearly year‐round, is a remnant of the mesic history of the southern Great Basin and Mojave deserts of eastern California. The history of voles in this region is a model for species‐edge population dynamics through periods of climatic change. We sampled voles from the eastern deserts of California and examined variation in the mitochondrial cytb gene, three nuclear intron regions, and across 12 nuclear microsatellite markers. Samples are allocated to two mitochondrial clades: one associated with southern California and the other with central and northern California. The limited mtDNA structure largely recovers the geographical distribution, replicated by both nuclear introns and microsatellites. The most remote population, Microtus californicus scirpensis at Tecopa near Death Valley, was the most distinct. This population shares microsatellite alleles with both mtDNA clades, and both its northern clade nuclear introns and southern clade mtDNA sequences support a hybrid origin for this endangered population. The overall patterns support two major invasions into the desert through an ancient system of riparian corridors along streams and lake margins during the latter part of the Pleistocene followed by local in situ divergence subsequent to late Pleistocene and Holocene drying events. Changes in current water resource use could easily remove California voles from parts of the desert landscape.  相似文献   

4.
Taxonomy of the live‐bearing fish of the genus Ilyodon Eigenmann, 1907 (Goodeidae), in Mexico, is controversial, with morphology and mitochondrial genetic analyses in disagreement about the number of valid species. The present study accumulated a comprehensive DNA sequences dataset of 98 individuals of all Ilyodon species and mitochondrial and nuclear loci to reconstruct the evolutionary history of the genus. Phylogenetic inference produced five clades, one with two sub‐clades, and one clade including three recognized species. Genetic distances in mitochondrial genes (cytb: 0.5%–2.1%; coxI: 0.5%–1.1% and d‐loop: 2.3%–10.2%) were relatively high among main clades, while, as expected, nuclear genes showed low variation (0.0%–0.2%), with geographic concordance and few shared haplotypes among river basins. High genetic structure was observed among clades and within basins. Our genetic analyses, applying the priority principle, suggest the recognition only of Ilyodon whitei and Ilyodon furcidens, with I. cortesae relegated to an invalid species, the populations of which belong to I. whitei.  相似文献   

5.
The phylogenetic relationships among the North Atlantic Gaidropsarus and between the three Gaidropsarinae genera Gaidropsarus, Ciliata and Enchelyopus are reviewed with the hitherto most comprehensive taxonomic sampling of this group. Phylogenetic results (maximum parsimony, maximum likelihood and Bayesian inference) based on nuclear (rhodopsin) and concatenated mitochondrial (12s, 16s and cytb) markers clearly support this subfamily. For the north‐eastern Atlantic species of Gaidropsarus, two previously unreported clades were strongly supported, clarifying the relationships within the genus, and revealing fewer distinct taxa in the north Atlantic Gaidropsarus than previously stipulated. The data challenge the specific status of Gaidropsarus mediterraneus and Gaidropsarus guttatus and raise doubts concerning the distinctiveness of other species. A taxonomic revision of the genus is suggested.  相似文献   

6.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

7.
Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna‐woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock‐restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra‐specific clades previously shown to be endemic to the region were themselves found to contain multiple, short‐range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low‐dispersal taxa, even ones that are ubiquitous across geography and habitats.  相似文献   

8.
The marmosets, tribe Callitrichini, are the most speciose clade in the subfamily Callitrichinae, containing 21 species. However, there is no consensus among molecular and morphological systematists as to how many genera should be recognized for the group. To test the morphological support for the alternative generic classifications, this study presents a comprehensive phylogenetic analysis. It is the first such analysis to include all 21 species and employ continuous and discrete osteological, pelage and tegument, karyological and vocal characters. This dataset was combined with nucleotide sequences from two mitochondrial and four nuclear regions. Separate analyses showed that, among morphological datasets, osteological characters were best at solving relationships at more inclusive levels, whilst pelage characters were most informative at the interspecific level. This suggests the presence of different transformation rates for the two character sets. When a single most parsimonious tree was obtained using the 83‐character matrix, three main clades were identified, supporting the division of the marmosets into three genera: Callithrix, Cebuella and Mico. The total evidence analysis that included an additional 3481 molecular characters corroborated most of the morphology‐based clades and also supported a three‐genus classification of the marmosets. This is the first morphological study to support an Amazonian marmoset clade (Cebuella Mico), which is also strongly supported in exclusively molecular phylogenies, and to synonimize Callibella under Mico.  相似文献   

9.
Blue‐tailed skinks (genus Plestiodon) are a common component of the terrestrial herpetofauna throughout their range in eastern Eurasia and North and Middle America. Plestiodon species are also frequent subjects of ecological and evolutionary research, yet a comprehensive, well‐supported phylogenetic framework does not yet exist for this genus. We construct a comprehensive molecular phylogeny of Plestiodon using Bayesian phylogenetic analyses of a nine‐locus data set comprising 8308 base pairs of DNA, sampled from 38 of the 43 species in the genus. We evaluate potential gene tree/species tree discordance by conducting phylogenetic analyses of the concatenated and individual locus data sets, as well as employing coalescent‐based methods. Specifically, we address the placement of Plestiodon within the evolutionary tree of Scincidae, as well as the phylogenetic relationships between Plestiodon species, and their taxonomy. Given our sampling of major Scincidae lineages, we also re‐evaluate ‘deep’ relationships within the family, with the goal of resolving relationships that have been ambiguous in recent molecular phylogenetic analyses. We infer strong support for several scincid relationships, including a major clade of ‘scincines’ and the inter‐relationships of major Mediterranean and southern African genera. Although we could not estimate the precise phylogenetic affinities of Plestiodon with statistically significant support, we nonetheless infer significant support for its inclusion in a large ‘scincine’ clade exclusive of Acontinae, Lygosominae, Brachymeles, and Ophiomorus. Plestiodon comprises three major geographically cohesive clades. One of these clades is composed of mostly large‐bodied species inhabiting northern Indochina, south‐eastern China (including Taiwan), and the southern Ryukyu Islands of Japan. The second clade comprises species inhabiting central China (including Taiwan) and the entire Japanese archipelago. The third clade exclusively inhabits North and Middle America and the island of Bermuda. A vast majority of interspecific relationships are strongly supported in the concatenated data analysis, but there is nonetheless significant conflict amongst the individual gene trees. Coalescent‐based gene tree/species tree analyses indicate that incongruence amongst the nuclear loci may severely obscure the phylogenetic inter‐relationships of the primarily small‐bodied Plestiodon species that inhabit the central Mexican highlands. These same analyses do support the sister relationship between Plestiodon marginatus Hallowell, 1861 and Plestiodon stimpsonii (Thompson, 1912), and differ with the mitochondrial DNA analysis that supports Plestiodon elegans (Boulenger, 1887) + P. stimpsonii. Finally, because the existing Plestiodon taxonomy is a poor representation of evolutionary relationships, we replace the existing supraspecific taxonomy with one congruent with our phylogenetic results. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 163–189.  相似文献   

10.
The satyrine butterfly Coenonympha tullia (Nymphalidae: Satyrinae) displays a deep split between two mitochondrial clades, one restricted to northern Alberta, Canada, and the other found throughout Alberta and across North America. We confirm this deep divide and test hypotheses explaining its phylogeographic structure. Neither genitalia morphology nor nuclear gene sequence supports cryptic species as an explanation, instead indicating differences between nuclear and mitochondrial genome histories. Sex‐biased dispersal is unlikely to cause such mito‐nuclear differences; however, selective sweeps by reproductive parasites could have led to this conflict. About half of the tested samples were infected by Wolbachia bacteria. Using multilocus strain typing for three Wolbachia genes, we show that the divergent mitochondrial clades are associated with two different Wolbachia strains, supporting the hypothesis that the mito‐nuclear differences resulted from selection on the mitochondrial genome due to selective sweeps by Wolbachia strains.  相似文献   

11.
The lizard genus Phymaturus is widely distributed in Argentina and along the eastern edge of Chile between 25° and 45° south. We sampled 27 of the 38 currently recognized species plus 22 candidate species using two mitochondrial genes (cytb and 12S), four protein coding nuclear genes and seven anonymous nuclear loci, and present the first comprehensive molecular phylogenetic hypothesis for the clade. We recovered two large clades (the palluma or northern group and patagonicus or southern group) previously recognized on the basis of morphological and mitochondrial sequence evidence, and compared results obtained from concatenated-gene analyses with results of a coalescent-based species-tree approach (BEST). With both methods we identified four main clades within the palluma group (mallimaccii, roigorum, verdugo, and vociferator) and five main clades within the patagonicus group (calcogaster, indistinctus, payuniae, somuncurensis, and spurcus). We found several instances of non-monophyly with cytb and cases of incongruence between mitochondrial vs nuclear data for which we discuss alternative hypotheses. Although with lower support values, combined BEST results are more congruent with concatenated nuclear data than with combined concatenated analyses, suggesting that BEST is less influenced by demographic processes than combined concatenated analyses. We discuss the taxonomic, biogeographic and conservation implications of these results and how the future integration of phylogeographic and morphological approaches will allow the further testing of demographic and biogeographic hypotheses.  相似文献   

12.
Black rats are major invasive vertebrate pests with severe ecological, economic and health impacts. Remarkably, their evolutionary history has received little attention, and there is no firm agreement on how many species should be recognized within the black rat complex. This species complex is native to India and Southeast Asia. According to current taxonomic classification, there are three taxa living in sympatry in several parts of Thailand, Cambodia and Lao People's Democratic Republic, where this study was conducted: two accepted species (Rattus tanezumi, Rattus sakeratensis) and an additional mitochondrial lineage of unclear taxonomic status referred to here as ‘Rattus R3’. We used extensive sampling, morphological data and diverse genetic markers differing in rates of evolution and parental inheritance (two mitochondrial DNA genes, one nuclear gene and eight microsatellite loci) to assess the reproductive isolation of these three taxa. Two close Asian relatives, Rattus argentiventer and Rattus exulans, were also included in the genetic analyses. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial phylogeny studies identified three reciprocally monophyletic clades in the black rat complex. However, studies of the phylogeny of the nuclear exon interphotoreceptor retinoid‐binding protein gene and clustering and assignation analyses with eight microsatellites failed to separate Rtanezumi and R3. Morphometric analyses were consistent with nuclear data. The incongruence between mitochondrial and nuclear (and morphological) data rendered Rtanezumi/R3 paraphyletic for mitochondrial lineages with respect to Rsakeratensis. Various evolutionary processes, such as shared ancestral polymorphism and incomplete lineage sorting or hybridization with massive mitochondrial introgression between species, may account for this unusual genetic pattern in mammals.  相似文献   

13.
The phylogenetic relationships within the horseshoe bats (genus Rhinolophus) are poorly resolved, particularly at deeper levels within the tree. We present a better-resolved phylogenetic hypothesis for 30 rhinolophid species based on parsimony and Bayesian analyses of the mitochondrial cytochrome b gene and three nuclear introns (TG, THY and PRKC1). Strong support was found for the existence of two geographic clades within the monophyletic Rhinolophidae: an African group and an Oriental assemblage. The relaxed Bayesian clock method indicated that the two rhinolophid clades diverged approximately 35 million years ago and results from Dispersal Vicariance (DIVA) analysis suggest that the horseshoe bats arose in Asia and subsequently dispersed into Europe and Africa.  相似文献   

14.
Many classic examples of adaptive radiations take place within fragmented systems such as islands or mountains, but the roles of mosaic landscapes and variable gene flow in facilitating species diversification is poorly understood. Here we combine phylogenetic and landscape genetic approaches to understand diversification in Darwin's finches, a model adaptive radiation. We combined sequence data from 14 nuclear introns, mitochondrial markers, and microsatellite variation from 51 populations of all 15 recognized species. Phylogenetic species‐trees recovered seven major finch clades: ground, tree, vegetarian, Cocos Island, grey and green warbler finches, and a distinct clade of sharp‐beaked ground finches (Geospiza cf. difficilis) basal to all ground and tree finches. The ground and tree finch clades lack species‐level phylogenetic structure. Interisland gene flow and interspecies introgression vary geographically in predictable ways. First, several species exhibit concordant patterns of population divergence across the channel separating the Galápagos platform islands from the separate volcanic province of northern islands. Second, peripheral islands have more admixed populations while central islands maintain more distinct species boundaries. This landscape perspective highlights a likely role for isolation of peripheral populations in initial divergence, and demonstrates that peripheral populations may maintain genetic diversity through outbreeding during the initial stages of speciation.  相似文献   

15.
Abstract Several studies have indicated that the green lacewing, Chrysoperla nipponensis (Neuroptera: Chrysopidae) may include more than one valid species. We investigated the phylogenetic status of Chrysoperla nipponensis s.l. in China and Japan using mitochondrial sequences and AFLP data. The molecular phylogenetic analyses based on mitochondrial genes showed that the C. nipponensis species‐complex comprises four clades, each having high support values. In addition, the phylogenetic tree based on AFLP data indicates that the species‐complex comprises three groups. These results confirm that C. nipponensis s.l. comprises at least three genetically distinct clades and suggests that two of these clades may be closely related to populations of C. nipponensis in Japan. However, these clades cannot be recognized as species until analysis of their courtship songs has been completed.  相似文献   

16.
The pine processionary moth (Thaumetopoea pityocampa) is an important pest of coniferous forests at the southern edge of its range in Maghreb. Based on mitochondrial markers, a strong genetic differentiation was previously found in this species between western (pityocampa clade) and eastern Maghreb populations (ENA clade), with the contact zone between the clades located in Algeria. We focused on the moth range in Algeria, using both mitochondrial (a 648 bp fragment of the tRNA‐cox2) and nuclear (11 microsatellite loci) markers. A further analysis using a shorter mtDNA fragment and the same microsatellite loci was carried out on a transect in the contact zone between the mitochondrial clades. Mitochondrial diversity showed a strong geographical structure and a well‐defined contact zone between the two clades. In particular, in the pityocampa clade, two inner subclades were found whereas ENA did not show any further structure. Microsatellite analysis outlined a different pattern of differentiation, with two main groups not overlapping with the mitochondrial clades. The inconsistency between mitochondrial and nuclear markers is probably explained by sex‐biased dispersal and recent afforestation efforts that have bridged isolated populations.  相似文献   

17.
Abstract. DNA sequences from the mitochondrial (including ND1, 16S) and nuclear (EF‐1α) genomes of about ninety‐four species were obtained to reconstruct phylogenetic relationships of Habronattus jumping spiders. Maximum parsimony trees were sought with both separate (mitochondrial, nuclear) and combined analyses; maximum likelihood trees were sought with both separate (ND1, 16S, EF‐1α introns, EF‐1α exons) and combined (mitochondrial, nuclear) analyses. All analyses agreed on some fundamental aspects of the tree, including the monophyly of the previously recognized agilis, amicus, dorotheae and americanus species groups. The deep phylogenetic structure is well resolved, placing the agilis, amicus, tranquillus and dorotheae groups basally. Several other previously unrecognized clades were well supported, including a newly formulated decorus group. The large group of species with modified male first and third legs was supported as monophyletic except for the surprising placement elsewhere of three species of the group. The phenotypic similarities between these three and the others are so detailed and precise that convergence in ornamentation can probably be ruled out. There are hints of phylogenetically distant genetic introgression involving the coecatus group. The combination Habronattus paratus is restored based on the species falling within Habronattus. Regarding patterns of character evolution, there was consistent support for the basal placement of several species groups with a long embolus, suggesting that there were more evolutionary reductions in embolus length than postulated in a previous morphological phylogeny. This is in accord with the expectation that there is a bias to an overly conservative interpretation of a character's evolution if it is interpreted on a phylogeny based in part on that same character. In contrast, the molecular phylogeny did not suggest any instances of the evolutionary transformation of one complex style of courtship into another, a possibility that could have been difficult to detect using the morphological phylogeny because of the same bias to conservativism.  相似文献   

18.
The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the desert areas of North Africa and across the Arabian Peninsula towards Iran. The systematics of this genus has been previously revised, although incomplete taxonomic sampling or weakly supported topologies resulted in inconclusive relationships. Biogeographic assessments of Uromastycinae mostly agree on the direction of dispersal from Asia to Africa, although the timeframe of the cladogenesis events has never been fully explored. In this study, we analysed 129 Uromastyx specimens from across the entire distribution range of the genus. We included all but one of the recognized taxa of the genus and sequenced them for three mitochondrial and three nuclear markers. This enabled us to obtain a comprehensive multilocus time‐calibrated phylogeny of the genus, using the concatenated data and species trees. We also applied coalescent‐based species delimitation methods, phylogenetic network analyses and model‐testing approaches to biogeographic inferences. Our results revealed Uromastyx as a monophyletic genus comprised of five groups and 14 independently evolving lineages, corresponding to the 14 currently recognized species sampled. The onset of Uromastyx diversification is estimated to have occurred in south‐west Asia during the Middle Miocene with a later radiation in North Africa. During its Saharo‐Arabian colonization, Uromastyx underwent multiple vicariance and dispersal events, hypothesized to be derived from tectonic movements and habitat fragmentation due to the active continental separation of Arabia from Africa and the expansion and contraction of arid areas in the region.  相似文献   

19.
Previous studies have suggested that bird populations in east Asia were less affected by Pleistocene climatic fluctuations than those in Europe and North America. However, this is mainly based on comparisons among species. It would be more relevant to analyse geographical populations of widespread species or species complexes. We analyzed two mitochondrial genes and two nuclear introns for all taxa of Pica to investigate 1) which Earth history factors have shaped the lineage divergence, and 2) whether different geographical populations were differently affected by the Pleistocene climatic changes. Our mitochondrial tree recovered three widespread lineages, 1) in east Asia, 2) across north Eurasia, and 3) in North America, respectively, with three isolated lineages in northwest Africa, Arabia and the Qinghai‐Tibet Plateau, respectively. Divergences among lineages took place 1.4–3.1 million yr ago. The northwest African population was sister to the others, which formed two main clades. In one of these, Arabia was sister to Qinghai‐Tibet, and these formed the sister clade to the east Asia clade. The other main clade comprised the North American and north Eurasian clades. There was no or very slight structure within these six geographical clades, including a lack of differentiation between the two North American species black‐billed magpie P. hudsonia and yellow‐billed magpie P. nutalli. Demographic expansion was recorded in the three most widespread lineages after 0.06 Ma. Asymmetric gene flow was recorded in the north Eurasian clade from southwestern Europe eastward, whereas the east Asian clade was rooted in south central China. Our results indicate that the fragmentation of the six clades of Pica was related to climatic cooling and aridification during periods of the Pliocene–Pleistocene. Populations on both sides of the Eurasian continent were similarly influenced by the Pleistocene climate changes and expanded concomitantly with the expansion of steppes. Based on results we also propose a revised taxonomy recognising seven species of Pica.  相似文献   

20.
The systematics and taxonomy of the Neotropical genus Micronycteris are not yet resolved; previous studies evidenced paraphyletic relationships, a number of potential undescribed species, and inadequate diagnostic characters. This revision focuses on the pale-bellied members of the genus using phylogenetic and morphometric tools, an increased sample size with all recognized taxa, and an expanded geographic coverage relative to prior studies. For the genetic analyses (n = 166), four molecular markers were concatenated, one mitochondrial (cytb), one nuclear (Fgb-I7), and two Y-chromosomal (DBY5 and DBY7). In the Bayesian and maximum likelihood analyses, the recognized subgenera Schizonycteris, Leuconycteris, Xenoctenes, and Micronycteris were recovered as monophyletic. The pale-bellied subgenera, Schizonycteris and Leuconycteris, were not sister clades; thus, venter coloration was not monophyletic. Leuconycteris was sister to the dark-bellied Micronycteris, and Schizonycteris was sister to the rest of the genus. Micronycteris schmidtorum was genetically defined for the first time, and it was determined all previous phylogenetic studies used a misidentified M. minuta from Bolivia. Our results showed a sister relationship between M. schmidtorum and M. brosseti, which redefines Leuconycteris. The subgenus Schizonycteris was also redefined, and it presented two well-supported clades from Central America and western Ecuador that are described as new species. Results are supported by a multivariate morphometric analyses (n = 114), karyological, and morphological comparisons. The taxonomic implications are discussed and emended diagnoses presented for the pale-bellied subgenera and for M. schmidtorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号