首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Studies on the effects of plant diversity on insect herbivory have produced conflicting results. Plant diversity has been reported to cause positive and negative responses of herbivores. Explanations for these conflicting responses include not only various population-level processes but also changes in plant quality that lead to changes in herbivore performance. In a tree diversity experiment, we investigated the effects of tree diversity on insect herbivory on oak in general and whether the effects of tree diversity on herbivore damage are reflected by the performance (leaf consumption, growth) of the generalist herbivore Lymantria dispar. Our study showed that the feeding damage caused by naturally occurring herbivores on oak trees decreased with increasing diversity of tree stands. The performance of L. dispar on oak leaves was not affected by tree diversity, neither in field nor laboratory experiments. Our results can be explained by the various processes behind the hypothesis of associational resistance.  相似文献   

2.
Individual plants may vary in their suitability as hosts for insect herbivores. The adaptive deme formation hypothesis predicts that this variability will lead to the fine-scale adaptation of herbivorous insects to host individuals. We studied individual and temporal variation in the quality of leaves of the tree species ash, lime, common oak, and sycamore in the field as food for herbivores. We determined herbivore attack and leaf consumption and performance of the generalist caterpillars of Spodoptera littoralis in the laboratory. We further assessed the concentrations of carbon, nitrogen and water in the leaves.All measures of leaf tissue quality varied among and within individuals for all tree species. The level of herbivory differed among the tree individuals in lime, oak and sycamore, but not in ash. Within host individuals, differences in herbivory between the upper and lower crown layer varied in direction and magnitude depending on tree species. In feeding experiments, herbivore performance also varied among and within tree individuals. However, variation in palatability was not consistently related to the leaf traits measured or to herbivory levels in the field. The ranking of individuals with respect to the quality of leaf tissue for herbivorous insects varied between years in lime and oak. Thus, trees of both species might present moving targets for herbivores which prevents fine-scale adaptations. In contrast, among individuals of ash and sycamore the pattern of insect performance remained constant over 2 years. These species may be more suitable hosts for the formation of adapted demes in herbivores.  相似文献   

3.
Seedlings of five species of dipterocarp trees were planted in experimental plots in rain forest gaps in Sabah, Malaysia, and the rates of herbivory on their mature leaves recorded over 6 mo. A novel method was used to estimate the feeding pressure exerted by the local insect herbivore community, derived from the relative abundances of the dominant generalist herbivores and their feeding preferences. Characteristics of the leaves related to their defense and nutritional value were measured—phenolic content, laminar fracture toughness, laminar thickness, and nitrogen content. Three main groups of herbivorous insects were present—coleopteran and lepidopteran herbivores, which were sampled by hand from the seedlings, and orthopteran herbivores, which were sampled by sweep netting. The feeding preferences of the main coleopteran and orthopteran herbivores were determined using laboratory feeding trials. Combining variables in a Principal Components Analysis, a clear separation was found between the five seedling species along the first extracted component. This correlated closely with herbivory rates between species. The first extracted component comprised a negative influence of phenolic content and positive effects of nitrogen content, laminar fracture toughness, abundances of coleopteran and lepidopteran herbivores, and estimated feeding pressure of the coleopteran community. Further studies are required to determine the potential applications of the latter measure of estimated herbivore community impact.  相似文献   

4.
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.  相似文献   

5.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

6.
Díaz M  Pulido FJ  Møller AP 《Oecologia》2004,139(2):224-234
Plants are able to compensate for loss of tissue due to herbivores at a variety of spatial and temporal scales, masking detrimental effects of herbivory on plant fitness at these scales. The stressing effect of herbivory could also produce instability in the development of plant modules, and measures of such instability may reflect the fitness consequences of herbivory if instability is related to components of plant fitness. We analyse the relationships between herbivory, developmental instability and production of female flowers and fruits of holm oak Quercus ilex trees by means of herbivore removal experiments. Removal of leaf herbivores reduced herbivory rates at the tree level, but had no effect on mean production of female flowers or mature fruits, whereas herbivory tended to enhance flower production and had no effect on fruit abortion at the shoot level. Differences in herbivory levels between shoots of the same branch did not affect the size and fluctuating asymmetry of intact leaves. These results indicate compensation for herbivory at the tree level and over-compensation at the shoot level in terms of allocation of resources to female flower production. Removal of insect herbivores produced an increase in the mean developmental instability of leaves at the tree level in the year following the insecticide treatment, and there was a direct relationship between herbivory rates in the current year and leaf fluctuating asymmetry the following year irrespective of herbivore removal treatment. Finally, the production of pistillate flowers and fruits by trees was inversely related to the mean fluctuating asymmetry of leaves growing the same year. Leaf fluctuating asymmetry was thus an estimator of the stressing effects of herbivory on adult trees, an effect that was delayed to the following year. As leaf fluctuating asymmetry was also related to tree fecundity, asymmetry levels provided a sensitive measure of plant performance under conditions of compensatory responses to herbivory.  相似文献   

7.
This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly.
Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

8.
The origin of species-rich insect-plant food webs has traditionally been explained by diversifying antagonistic coevolution between plant defences and herbivore counter-defences. However, recent studies combining paleoclimatic reconstructions with time-calibrated phylogenies suggest that variation in global climate determines the distribution, abundance and diversity of plant clades and, hence, indirectly influences the balance between speciation and extinction in associated herbivore groups. Extant insect communities tend to be richest on common plant species that have many close relatives. This could be explained either by climate-driven diffuse cospeciation between plants and insects, or by elevated speciation and reduced extinction in herbivore lineages associated with expanding host taxa (resources). Progress in paleovegetation reconstructions in combination with the rapidly increasing availability of fossil-calibrated phylogenies provide means to discern between these alternative hypotheses. In particular, the 'Diffuse cospeciation' scenario predicts closely matching main diversification periods in plants and in the insects that feed upon them, while the 'Resource abundance-dependent diversification' hypothesis predicts that both positive and negative responses of insect diversity are lagged in relation to host-plant availability. The dramatic Cenozoic changes in global climate provide multiple possibilities for studying the mechanisms by which climatic shifts may drive diversity dynamics in plants and insect herbivores.  相似文献   

9.
The damage caused by herbivores can be confused with the drop of necrotic spots due to hypersensitive reactions. The negative impact of sessile herbivores on host plants is minimized by hypersensitive reactions that result in the death of attacked tissue. We reported a phenomenon that remarkably resembles herbivore damage, but is in fact a reaction to endophytic herbivores or pathogens. Although the damages on Tapirira guianensis leaves (Anacardiaceae) appear to be chew marks from herbivores, they are in fact dropped necrotic spots caused by gall-inducing insects. The phenomenon is widespread and challenges the view that gall-inducing insects inflict less damage on host plants, which was previously stated according to the rates of herbivory inflicted by free-feeding herbivores. The study highlights the need to reassess the past evaluations for some plant species, as they may have overestimated herbivory rates.  相似文献   

10.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

11.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

12.
1. Variation in spring phenology – like tree budburst – affects the structure of insect communities, but impacts of autumn phenology have been neglected. Many plant species have recently delayed their autumn phenology, and the timing of leaf senescence may be important for herbivorous insects. 2. This study explored how an insect herbivore community associated with Quercus robur is influenced by variation in autumn phenology. For this, schools were asked to record, across the range of oak in Sweden, the autumn phenology of oaks and to conduct a survey of the insect community. 3. To tease apart the relative impacts of climate from that of tree phenology, regional tree phenology was first modelled as a function of regional climate, and the tree‐specific deviation from this relationship was then used as the metric of relative tree‐specific phenology. 4. At the regional scale, a warmer climate postponed oak leaf senescence. This was also reflected in the insect herbivore community: six out of 15 taxa occurred at a higher incidence and five out of 18 taxa were more abundant, in locations with a warmer climate. Similarly, taxonomic richness and herbivory were higher in warmer locations. 5. Trees with a relatively late autumn phenology had higher abundances of leaf miners (Phyllonorycter spp.). This caused lower community diversity and evenness on trees with later autumn phenology. 6. The findings of the present study illustrate that both regional climate‐driven patterns and local variation in oak autumn phenology contribute to shaping the insect herbivore community. Community patterns may thus shift with a changing climate.  相似文献   

13.
Bottom‐up and top‐down impacts on herbivores can be influenced by plant productivity, structural complexity, vigor and size. Although these traits are likely to vary with plant development, the influence of plant ontogeny on the relative importance of plant quality (i.e. bottom‐up forces) and predation risk (i.e. top‐down forces) has been the focus of little previous investigation. We evaluated the role of plant ontogeny for the relative importance of bottom‐up and top‐down forces on insect herbivore abundance, species richness, and species diversity attacking the tropical tree Casearia nitida. We also quantified the cascading effects on herbivory, growth and reproduction of this plant species. Plant quality traits (nitrogen and phenolic compounds) were assessed in saplings and reproductive trees. Bottom‐up forces were manipulated by fertilizing plants from both ontogenetic stages. Top‐down forces were manipulated by excluding insectivorous birds from saplings and reproductive trees. Plant ontogeny influenced foliage quality in terms of total phenolics, which were in greater concentration in reproductive trees than in saplings; however, it did not influence bottom‐up forces as modified by fertilization. Bird exclusion increased herbivore density with the same magnitude on both stages. Ontogeny influenced species diversity, which was greater in reproductive trees than in saplings, and also influenced treatment impacts on species richness and diversity. Although top‐down forces increased herbivory equally on plants of each ontogenetic stage, the two stages showed different overcompensation responses to increased damage: caged saplings produced greater leaf biomass than non‐caged saplings, whereas caged trees increased in height proportionally more than non‐caged trees. In sum, plant ontogeny influenced the impact of bird predation on herbivore density, species richness, and species diversity, and the growth variables affected by increased damage in caged plants. We suggest that plant ontogeny can contribute to some extent to the influence of plant quality and the third trophic level on herbivores in this system.  相似文献   

14.
Abstract Insects feeding on ten species of wild crucifer were investigated. Differences in host plant range and insect community structure were examined with regard to anti-herbivore defense mechanisms. Most of the crucifer species deterred insect herbivory by disappearing in the summer or by lowering their intrinsic quality as food for insects. Species with these defense mechanisms were exploited by only a few specialized herbivorous insects that seemed to have counter defenses. The plants without these defense mechanisms were used by many herbivorous insect species. Rorippa indica lacked direct defenses, but supported a low total density of herbivore individuals. This crucifer has an indirect defense mechanism: ants attracted to floral nectar defended the plant from deleterious herbivores. Crucifers that disappeared seasonally lacked other anti-herbivore defense mechanisms. This suggests that the phonological response is an alternative other responses to herbivore attack.  相似文献   

15.
Induced defences to herbivory are physical, nutritional, and allelochemical traits that change in plants following damage or stress, and that reduce the performance and/or preference of herbivores. The aim of this study was to verify the occurrence and effect of induced responses in Bauhinia brevipes (Vog.) (Leguminosae) which defend it against herbivores, through the manipulation of its leaves, and their effects on herbivore foraging behaviour. We selected 15 plants in the field, and three shoots per plant were subjected to one of three treatments: (1) damaged shoots (simulation of the main types of foliar herbivory and insect exclusion); (2) damaged control shoots (insect exclusion); and (3) control shoots (not manipulated). Water and nitrogen content, tannin concentration, levels of herbivory, and shoot growth rates were compared among treatments. Leaf quality varied among treatments. Damaged leaves showed higher tannin concentration, and lower water and nitrogen content compared to undamaged leaves. On the other hand, they experienced higher rates of herbivory than leaves on control shoots. Moreover, shoots that were experimentally induced showed a higher increase in final shoot length. These results suggest that simulated herbivory on B. brevipes reduced the nutritional quality of its leaves and increased the amount of secondary compounds, therefore altering insect herbivore attack and increasing shoot performance.  相似文献   

16.
The interactions between herbivorous insects and their host plants are expected to be influenced by changing climates. Modern oaks provide an excellent system to examine this assumption because their interactions with herbivores occur over broad climatic and spatial scales, they vary in their defensive and nutritional investment in leaves by being deciduous or evergreen, and their insect herbivores range from generalists to highly specialized feeders. In this study, we surveyed leaf-litter samples of four oak species along an elevation gradient, from coastal northern California, USA, to the upper montane woodlands of the Sierra Nevada, to examine the relationship between climatic factors (mean annual temperature and precipitation) and oak herbivory levels at multiple scales; across all oak species pooled, between evergreen and deciduous species and within species.Overall, temperature and precipitation did not appear to have a significant effect on most measures of total herbivore damage (percent leaves damaged per tree, percent leaf area removed and average number of feeding damage marks per leaf) and the strongest predictor of herbivore damage overall was the identity of the host species. However, increases in precipitation were correlated with an increase in the actual leaf area removed, and specialized insects, such as those that make leaf mines and galls, were the most sensitive to differences in precipitation levels. This suggests that the effects of changing climate on some plant–insect interactions is less likely to result in broad scale increases in damage with increasing temperatures or changing precipitation levels, but is rather more likely to be dependent on the type of herbivore (specialist vs. generalist) and the scale (species vs. community) over which the effect is examined.  相似文献   

17.
Marco Archetti 《Oikos》2009,118(3):328-333
I review the hypotheses that have been proposed to explain the adaptive value of autumn leaf colours. The available adaptive hypotheses can be reduced to the following. Photoprotection: pigments protect against photoinhibition or photooxidation allowing a more efficient recovery of nutrients. Drought resistance: pigments decrease osmotic potential allowing leaves to tolerate water stress. Leaf warming: pigments convert light into heat and warm leaves. Fruit flag: colour attracts animals that help disperse seeds. Coevolution: colour signals that the tree is not a suitable host for insects. Camouflage: colour makes leaves less detectable to herbivores. Anticamouflage: colour enhances conspicuousness of parasites dwelling on leaves to predators or parasitoids. Unpalatability: pigments act as direct anti-feedants against herbivores. Reduced nutrient loss: yellow leaves have less to lose against herbivory. Tritrophic mutualism: colour attracts aphids which attract ants that defend the trees from other insects. For each hypothesis I mention the original references, I define assumptions and predictions, and I discuss briefly conceptual problems and available evidence.  相似文献   

18.
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.  相似文献   

19.
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.  相似文献   

20.
Recent findings suggest that impacts of endemic herbivory on forest ecosystems over the long term may exceed impacts of herbivore outbreaks. However, responses of trees to minor and local damage imposed by small arthropod herbivores, especially by those mining or skeletonising individual leaves, remain poorly understood. We studied the delayed effects of injuries by several leafmining and leafrolling insects on the performance of downy birch shoots. Insect feeding did not affect survival of shoots or survival of individual axillary buds in long shoots. In the year following the damage, shoots produced an average of 13.8% more biomass than undamaged shoots of the same tree. The magnitude of this effect increased with an increase in the leaf area injured during the previous year, but it did not differ among four localities in subarctic and boreo‐nemoral forests, between herbivore feeding guilds, or among herbivores imposing damage in early, mid and late summer. We also found that herbivores attacked the next‐year foliage produced by damaged shoots less frequently than they attacked the next‐year foliage produced by undamaged shoots of the same tree. Thus, our study demonstrated delayed local compensatory growth and increased antiherbivore defence in downy birch shoots following local damage by insect feeding. We suggest that this pattern reflects evolutionary adaptations of plants to permanently acting minor, dispersed and spatially unpredictable damage imposed by endemic herbivory. Local responses are less costly and represent a more sustainable strategy to maintain plant fitness under low levels of herbivory than constitutive resistance or systemic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号