首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Shiga toxins 1 and 2 (Stx1 and Stx2) are bacteriophage-encoded proteins that have been associated with hemorrhagic colitis, hemolytic uremic syndrome and other severe disease conditions. Stx1 and Stx2 are genetically and immunologically distinct but share the same compound toxin structure, method of entry and enzymatic function.  相似文献   

2.
A rapid and sensitive two‐step time‐resolved fluorescence immunoassay (TRFIA) was developed for the detection of Shiga toxin 2 (Stx2) and its variants in Shiga toxin‐producing Escherichia coli (STEC) strains. In sandwich mode, a monoclonal antibody against Stx2 was coated on a microtiter plate as a capture antibody. A tracer antibody against Stx2 labeled with europium(III) (Eu3+) chelate was then used as a detector, followed by fluorescence measurements using time‐resolved fluorescence. The sensitivity of Stx2 detection was 0.038 ng/ml (dynamic range, 0.1–1000 ng/ml). The intra‐ and inter‐assay coefficients of variation of the assay were 3.2% and 3.6%, respectively. The performance of the established assay was evaluated using culture supernatants of STEC strains, and the results were compared to those of a common HRP (horseradish peroxidase) labeling immunosorbent assay. A polymerase chain reaction (PCR) for the detection of genes encoding Stx1 and Stx2 was used as the reference for comparison. Correlation between the Stx2‐specific TRFIA and PCR was calculated by the use of kappa statics, exhibiting a perfect level of agreement. The availability of the sensitive and reliable Stx2‐specific TRFIA method for quantifying Stx2 and its variants in STEC strains will complement bacteria isolation‐based platform and aid in the accurate and prompt diagnosis of STEC infections.  相似文献   

3.
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.  相似文献   

4.
Aims: To evaluate a qPCR‐based protocol for the enumeration of Shiga toxin (Stx) 2 phages and to compare the results of qPCR with the number of infective Stx phage particles. Methods and Results: An approach based on qPCR was applied to count Stx phages in five phage lysates of known titre. The number of viral particles from each phage lysate was determined by electron microscopy using latex spheres. The infectivity of the Stx phages was evaluated onto three bacterial host strains, by double agar layer assay and plaque blot hybridization. The number of phage particles detected by electron microscopy correlates with the number calculated by qPCR in all the phages assayed. The number of infectious phages was from 1 to 3 log10 units below the numbers obtained by qPCR and electron microscopy. Conclusions: The approach allows accurate quantification of Stx phages with a high recovery. The number of infectious phages is always below the number of phage particles detected by qPCR. Significance and Impact of the Study: The qPCR method is a good approach to enumerate Stx phages. However, these results should be carefully considered when related to the number of infectious phages for each lysate that could be applied in real samples, because values of infectious particles are always below the number of Stx phages detected by qPCR.  相似文献   

5.
6.
The minimum sequence of the enzymatic (A) subunit of Shiga toxin (STX) required for activity was investigated by introducing N-terminal and C-terminal deletions in the molecule. Enzymatic activity was assessed by using an in vitro translation system. A 253-amino-acid STX A polypeptide, which is recognized as the enzymatically active portion of the 293-amino-acid A subunit, expressed less than wild-type levels of activity. In addition, alteration of the proposed nicking site between Ala-253 and Ser-254 by site-directed mutagenesis apparently prevented proteolytic processing but had no effect on the enzymatic activity of the molecule. Therefore, deletion analysis was used to identify amino acid residue 271 as the C terminus of the enzymatically active portion of the STX A subunit. STX A polypeptides with N-terminal and C-terminal deletions were released into the periplasmic space of Escherichia coli by fusion to the signal peptide and the first 22 amino acids of Shiga-like toxin type II, a member of the STX family. Although these fusion proteins expressed less than wild-type levels of enzymatic activity, they confirmed the previous finding that Tyr-77 is an active-site residue. Therefore, the minimum domain of the A polypeptide which was required for the expression of enzymatic activity was defined as StxA residues 75 to 268.  相似文献   

7.
It has been suggested that some factor present in human plasma binds to Shiga toxin 2 (Stx2) and neutralizes it in vitro (Bitzan, M., Klemt, M., Steffens, R., and Muller-Wiefel, D. E. (1993) Infection 21, 140-145). This factor does not exist in other species (Caprioli, A., Luzzi, I., Seganti, L., Marchetti, M., Karmali, M., Clarke, I., and Boyd, B. (1994) Recent Adv. VTEC Infect. 353-356). Because analysis of this factor is important to understanding the pathology induced by Shiga toxin-producing Escherichia coli, we purified this factor from human plasma and identified it. Purification was carried out by serially subjecting human plasma to Con A-Sepharose, DEAE-Sepharose, hydroxyapatite, and gel-filtration high performance liquid chromatography (HPLC), using Stx2-neutralizing activity as the indicator. The gel-filtration HPLC fraction yielded a single band on SDS-polyacrylamide gel electrophoresis. Twenty N-terminal amino acid residues of this fraction were analyzed and found to correspond perfectly to human serum amyloid P component (HuSAP). Because commercially available HuSAP also showed Stx2 binding and neutralizing activity, we identified this factor as HuSAP.  相似文献   

8.
9.
10.
Shiga toxin can be internalized by clathrin-dependent endocytosis in different cell lines, although it binds specifically to the glycosphingolipid Gb3. It has been demonstrated previously that the toxin can induce recruitment of the toxin-receptor complex to clathrin-coated pits, but whether this process is concentration-dependent or which part of the toxin molecule is involved in this process, have so far been unresolved issues. In this article, we show that the rate of Shiga toxin uptake is dependent on the toxin concentration in several cell lines [HEp-2, HeLa, Vero and baby hamster kidney (BHK)], and that the increased rate observed at higher concentrations is strictly dependent on the presence of the A-subunit of cell surface-bound toxin. Surface-bound B-subunit has no stimulatory effect. Furthermore, this increase in toxin endocytosis is dependent on functional clathrin, as it did not occur in BHK cells after induction of antisense to clathrin heavy chain, thereby blocking clathrin-dependent endocytosis. By immunofluorescence, we show that there is an increased colocalization between Alexa-labeled Shiga toxin and Cy5-labeled transferrin in HeLa cells upon addition of unlabeled toxin. In conclusion, the data indicate that the Shiga toxin A-subunit of cell surface-bound toxin stimulates clathrin-dependent uptake of the toxin. Possible explanations for this phenomenon are discussed.  相似文献   

11.
Shiga toxin 2 (Stx2)‐specific mAb‐producing hybridoma clones were generated from mice. Because mice tend to produce small amounts of B subunit (Stx2B)‐specific antibodies at the polyclonal antibody level after immunization via the parenteral route, mice were immunized intranasally with Stx2 toxoids with a mutant heat‐labile enterotoxin as a mucosal adjuvant; 11 different hybridoma clones were obtained in two trials. Six of them were A subunit (Stx2A)‐specific whereas five were Stx2B‐specific antibody‐producing clones. The in vitro neutralization activity of Stx2B‐specific mAbs against Stx2 was greater than that of Stx2A‐specific mAbs on HeLa229 cells. Furthermore, even at low concentrations two of the Stx2B‐specific mAbs (45 and 75D9) completely inhibited receptor binding and showed in vivo neutralization activity against a fivefold median lethal dose of Stx2 in mice. In western blot analysis, these Stx2B‐specific neutralization antibodies did not react to three different mutant forms of Stx2, each amino acid residue of which was associated with receptor binding. Additionally, the nucleotide sequences of the VH and VL regions of clones 45 and 75D9 were determined. Our Stx2B‐specific mAbs may be new candidates for the development of mouse‐human chimeric Stx2‐neutralizing antibodies which have fewer adverse effects than animal antibodies for enterohemorrhagic Escherichia coli infection.  相似文献   

12.
For the commercial development of organic photovoltaics (OPVs), laboratory‐scale OPV technology must be translated to large area modules. In particular, it is important to develop high‐efficiency polymers that can form thick (>100 nm) bulk heterojunction (BHJ) films over large areas with optimal morphologies for charge generation and transport. Here, D1‐A‐D2‐A random terpolymers composed of 2,2′‐bithiophene with various proportions of 5,6‐difluoro‐4,7‐bis(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole and 5,6‐difluoro‐2,1,3‐benzothiadiazole (FBT) are synthesized. It is found that incorporating small proportions of FBT into the polymer not only conserves the high crystallinity and favorable face‐on orientation of the D‐A copolymer FBT‐Th4 but also improves the nanoscale phase separation of the BHJ film. Consequently, the random terpolymer PDT2fBT‐BT10 exhibits a much improved solar cell efficiency of 10.31% when compared to that of the copolymer FBT‐Th4 (8.62%). Moreover, due to this polymer's excellent processability and suppressed overaggregation, OPVs with 1 cm2 active area based on 351 nm thick PDT2fBT‐BT10 BHJs exhibit high photovoltaic performance of 9.42%, whereas rapid efficiency decreases arise for FBT‐Th4‐based OPVs for film thicknesses above 300 nm. It is demonstrated that this random terpolymer can be used in large area and thick BHJ OPVs, and guidelines for developing polymers that are suitable for large‐scale printing technologies are presented.  相似文献   

13.
猪水肿病毒素Stx2e的致Vero细胞凋亡作用   总被引:2,自引:0,他引:2  
摘要:【目的】研究猪水肿病的致病因子志贺毒素2e(Shiga toxin 2e, Stx2e)的致病机理。【方法】以AO/EB荧光染色法、琼脂糖凝胶电泳法和Western blot等方法研究Stx2e对Vero细胞的致凋亡作用及其信号途径。【结果】从细胞形态学和染色质水平证明,Stx2e 能诱导Vero细胞凋亡,并表现出时间和浓度依赖性;同时引起caspase-3表达量明显上调,Bax、caspase-9的表达量没有明显变化。【结论】Stx2e对Vero细胞的致凋亡作用主要通过膜受体通路引起,线粒体信号通路所起的作用较小。  相似文献   

14.
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.  相似文献   

15.
Chicken egg yolk immunoglobulin (IgY) against Shiga toxin 2e (Stx2e), a major cause of swine edema disease, was prepared to evaluate its possible clinical applications. The titer of Stx2e‐specific IgY in egg yolk derived from three chickens that had been immunized with an Stx2e toxoid increased 2 weeks after primary immunization and remained high until 90 days after this immunization. Anti‐Stx2e IgY was found to neutralize the toxicity of Stx2e by reacting with its A and B subunits, indicating that IgY is a cost‐effective agent to develop for prophylactic foods or diagnosis kits for edema disease.  相似文献   

16.
17.
The tetanus neurotoxin (TeNT) is a highly potent toxin produced by Clostridium tetani that inhibits neurotransmission of inhibitory interneurons, causing spastic paralysis in the tetanus disease. TeNT differs from the other clostridial neurotoxins by its unique ability to target the central nervous system by retrograde axonal transport. The crystal structure of the tetanus toxin reveals a “closed” domain arrangement stabilised by two disulphide bridges, and the molecular details of the toxin's interaction with its polysaccharide receptor. An integrative analysis combining X‐ray crystallography, solution scattering and single particle electron cryo‐microscopy reveals pH‐mediated domain rearrangements that may give TeNT the ability to adapt to the multiple environments encountered during intoxication, and facilitate binding to distinct receptors.  相似文献   

18.
Deep‐UV resonance Raman (UVRR) spectroscopy and circular dichroism (CD) were employed to study the secondary structure of Aβ(1–42) in fresh samples with increasing fractions of oligomeric peptide. A feature with a minimum at ~217 nm appeared in CD spectra of samples containing oligomeric Aβ(1–42). UVRR spectra more closely resembled those of disordered proteins. The primary difference between UVRR spectra was the ratio of the 1236 cm–1 to 1260 cm–1 amide III peak intensities, which shifted in favor of the 1236 cm–1 band as the fraction of oligomeric peptide increased. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins   总被引:33,自引:0,他引:33  
It is now well documented that some enteric bacteria which cause diarrhoeal and/or dysenteric disease produce, at high levels, one or more of a family of protein toxins referred to as Shiga toxin and Shiga-like toxins (SLTs; alternatively called verocytotoxins or VTs). Within the past few years, there have been considerable advancements made in our understanding of the biochemistry and molecular biology of Shiga toxin and SLTs. However, the precise role of the toxins in mediating colonic disease, as well as their contribution to the development of extra-intestinal sequelae (e.g. the haemolytic uraemic syndrome and neurological disorders), remain less clear. In this MicroReview, we will briefly summarize recent progress in Shiga toxin- and SLT-related research and present evidence supporting the concept that these toxins contribute to pathogenesis by directly damaging vascular endothelial cells, thereby disrupting the homeostatic properties of these cells. We will also discuss data which suggest that toxin-mediated damage in the kidney may not be limited to glomerular endothelial cells but may include tubular epithelial cells. Thus, the role of the toxins in renal disease may not be limited to the glomeruli, as was initially hypothesized when the association of infection with toxin-producing strains and the development of acute renal failure was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号