首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
    
Variation in three life‐history traits (developmental time, preadult viability and daily female productivity) and five morphometrical traits (thorax length, wing length, wing width, wing/thorax ratio and wing‐aspect ratio) was studied at three developmental temperatures (20, 25 and 30 °C) in Drosophila buzzatii and Drosophila simulans collected on the island of La Gomera (Canary Archipelago). The flies originated from five closely situated localities, representing different altitudes (from 20 to 886 m above sea level) and a range of climatic conditions. We found statistically significant population effects for all traits in D. buzzatii and for most of the traits in D. simulans. Although no correlations of trait values with altitude were detected, geographical patterns for three life‐history traits and body size in D. buzzatii indicated that short‐range geographical variation in this species could be maintained by local climatic selection. Five of eight traits showed population‐by‐temperature interactions either in D. buzzatii or in D. simulans, but in all cases except wing width in D. buzzatii this could not be interpreted as adaptive responses to thermal conditions in the localities. The range of plastic changes across temperatures for particular traits differed between species, indicating a possibility for different levels of environmental stress experienced by the natural populations. The reaction norm curves and the response of within‐population variability to thermal treatments suggested better adaptations to higher and lower temperatures for D. buzzatii and D. simulans, respectively. The levels of among‐population differentiation depended on developmental temperature, implying environmental effects on the expression of the genetic variance. At 20 and 25 °C, interpopulation variability in D. buzzatii was higher than in D. simulans, while at 30 °C the opposite trend was observed. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 119–136.  相似文献   

2.
    
The evolution of adaptive phenotypic plasticity relies on the presence of cues that enable organisms to adjust their phenotype to match local conditions. Although mostly studied with respect to nonsocial cues, it is also possible that parents transmit information about the environment to their offspring. Such ‘anticipatory parental effects’ or ‘adaptive transgenerational plasticity’ can have important consequences for the dynamics and adaptive potential of populations in heterogeneous environments. Yet, it remains unknown how widespread this form of plasticity is. Using a meta‐analysis of experimental studies with a fully factorial design, we show that there is only weak evidence for higher offspring performance when parental and offspring environments are matched compared with when they are mismatched. Estimates of heterogeneity among studies suggest that effects, when they occur, are subtle. Study features, environmental context, life stage and trait categories all failed to explain significant amounts of variation in effect sizes. We discuss theoretical and methodological reasons for the limited evidence for anticipatory parental effects and suggest ways to improve our understanding of the prevalence of this form of plasticity in nature.  相似文献   

3.
    
Optimality models predict that diet‐induced bivariate reaction norms for age and size at maturity can have diverse shapes, with the slope varying from negative to positive. To evaluate these predictions, we perform a quantitative review of relevant data, using a literature‐derived database of body sizes and development times for over 200 insect species. We show that bivariate reaction norms with a negative slope prevail in nearly all taxonomic and ecological categories of insects as well as in some other ectotherm taxa with comparable life histories (arachnids and amphibians). In insects, positive slopes are largely limited to species, which feed on discrete resource items, parasitoids in particular. By contrast, with virtually no meaningful exceptions, herbivorous and predatory insects display reaction norms with a negative slope. This is consistent with the idea that predictable resource depletion, a scenario selecting for positively sloped reaction norms, is not frequent for these insects. Another source of such selection—a positive correlation between resource levels and juvenile mortality rates—should similarly be rare among insects. Positive slopes can also be predicted by models which integrate life‐history evolution and population dynamics. As bottom‐up regulation is not common in most insect groups, such models may not be most appropriate for insects.  相似文献   

4.
Maternal and environmental effects can profoundly influence offspring phenotypes, independent of genetic effects. Within avian broods, both the asymmetric post‐hatching environment created by hatching asynchrony and the differential maternal investment through the laying sequence have important consequences for individual nestlings in terms of the allocation of resources to body structures with different contributions to fitness. The purpose of this study was to evaluate the relative importance of post‐hatching environmental and maternal effects in generating variation in offspring phenotypes. First, an observational study showed that within blue tit, Cyanistes caeruleus, broods, late‐hatched nestlings allocated resources to tarsus development, maintained mass gain and head‐bill growth and directed resources away from the development of fourth primary feathers. Second, a hatching order manipulation experiment resulted in nestlings from first‐laid eggs hatching last, thereby allowing comparison with both late and early‐hatched nestlings. Experimental nestlings had growth patterns which were closer to late‐hatched nestlings, suggesting that within‐brood growth patterns are determined by post‐hatching environmental effects. Therefore, we conclude that post‐hatching environmental effects play an important role in generating variation in offspring phenotypes.  相似文献   

5.
Genotype‐by‐environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide‐ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.  相似文献   

6.
    
Frost and heat events can be challenging for sessile organisms that cannot escape thermal extremes. However, adverse effects of thermal stress on fitness may be reduced by pre‐exposure to cold or heat, a process known as acclimation. To understand the ecological and evolutionary implications of acclimation, we investigated (1) the reduction in performance due to stress pre‐exposure, (2) the magnitude of increased leaf resistance to subsequent stress, (3) the costs of acclimation and (4) the genes differing in expression due to stress pre‐exposure. Plants of Arabidopsis lyrata were raised under three treatments of pre‐exposure: bouts of frost, bouts of heat or constant temperature. Resistance of leaves to subsequent frost and heat stress was then measured by electrolyte leakage. RNA‐seq analysis was performed to examine the genes differentially expressed between stress‐pre‐exposed and control plants. Pre‐exposure to stress during growth decreased plant size and increased leaf resistance to subsequent stress independent of whether pre‐exposure was to frost or heat. But the highest increase in leaf resistance to frost was found after pre‐exposure to frost (as a trend) and in leaf resistance to heat after pre‐exposure to heat. No evidence for costs of acclimation was detected. RNA‐sequencing suggested that acclimation by frost and heat pre‐exposure was caused by distinct mechanisms: modification of the chloroplast membrane and modification of the cell wall and membrane, respectively. Our results suggest that thermal resistance is a labile complex of traits, strongly affected by the previously experienced stress environment, with undetermined costs.  相似文献   

7.
Adaptive phenotypic plasticity in the form of capacity to accelerate development as a response to pond drying risk is known from many amphibian species. However, very little is known about factors that might constrain the evolution of this type of plasticity, and few studies have explored to what degree plasticity might be constrained by trade-offs dictated by adaptation to different environmental conditions. We compared the ability of southern and northern Scandinavian common frog (Rana temporaria) larvae originating from 10 different populations to accelerate their development in response to simulated pond drying risk and the resulting costs in metamorphic size in a factorial laboratory experiment. We found that (i) northern larvae developed faster than the southern larvae in all treatments, (ii) a capacity to accelerate the response was present in all five southern and all five northern populations tested, but that the magnitude of the response was much larger (and less variable) in the southern than in the northern populations, and that (iii) significant plasticity costs in metamorphic size were present in the southern populations, the plastic genotypes having smaller metamorphic size in the absence of desiccation risk, but no evidence for plasticity costs was found in the northern populations. We suggest that the weaker response to pond drying risk in the northern populations is due to stronger selection on large metamorphic size as compared with southern populations. In other words, seasonal time constraints that have selected the northern larvae to be fast growing and developing, may also constrain their innate ability for adaptive phenotypic plasticity.  相似文献   

8.
9.
Abstract.
  • 1 An examination of phenotypic variation in colour pattern was carried out on four Eristalis hoverfly species using museum material.
  • 2 The amount of phenotypic variation varied substantially among the species with E.arbustorum being the most variable. The other species showed a wide colour pattern range but less variation within that range (E.abusivus and E.nemorum), or a narrow range of colour variation (E.horticola).
  • 3 Sexual colour dimorphism was apparent in all four species, but most pronounced in E.abusivus and E.nemorum.
  • 4 There were good phenotype-season relationships shown by both sexes in all species, except for female E.abusivus and E.nemorum, with paler insects being more abundant during the warmer summer months.
  • 5 Female, but not male, E.arbustorum collected at inland sites were on average paler than those collected at coastal sites. This observation is considered with respect to temperature during the developmental stages.
  • 6 The function of colour plasticity in hoverflies is discussed with reference to the need to maintain optimal thermal conditions for activity.
  相似文献   

10.
    
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf blade area approximately 30 days after emergence, followed by increases in leaf blade area. Seedlings receiving low light were 76% taller than seedlings receiving high light. Seedlings receiving low light also had larger leaf blade dimensions, blade area, seedling leaf area, and greater mass. Seedlings raised in high light had a greater proportional distribution of biomass in the roots, suggesting possible water stress from greater vapor pressure deficits. Furthermore, these seedlings displayed sharp angles of blade inclination and blade folding – acclimation that reduces exposure to light and subsequent higher leaf temperatures in open environments. These differences in morphological response to light resulted in high phenotypic variability in L. melissifolia seedlings. Lindera melissifolia seedling development showed a brief period of phenotypic plasticity, followed by ontogenetic plasticity. The short period of phenotypic plasticity may, however, have profound ecological implications for the conservation and recovery of this federally endangered shrub. Further experimentation should take into account the development of ontogenetic standards for comparisons of plant traits in addition to temporal standards.  相似文献   

11.
    
The role of developmental bias and plasticity in evolution is a central research interest in evolutionary biology. Studies of these concepts and related processes are usually conducted on extant systems and have seen limited investigation in the fossil record. Here, I identify plasticity‐led evolution (PLE) as a form of developmental bias accessible through scrutiny of paleontological material. I summarize the process of PLE and describe it in terms of the environmentally mediated accumulation and release of cryptic genetic variation. Given this structure, I then predict its manifestation in the fossil record, discuss its similarity to quantum evolution and punctuated equilibrium, and argue that these describe macroevolutionary patterns concordant with PLE. Finally, I suggest methods and directions towards providing evidence of PLE in the fossil record and conclude that such endeavors are likely to be highly rewarding.  相似文献   

12.
13.
14.
Plants possess a remarkable capacity to alter their phenotype in response to the highly heterogeneous light conditions they commonly encounter in natural environments. In the present study with the weedy annual plant Sinapis arvensis, we (a) tested for the adaptive value of phenotypic plasticity in morphological and life history traits in response to low light and (b) explored possible fitness costs of plasticity. Replicates of 31 half-sib families were grown individually in the greenhouse under full light and under low light (40% of ambient) imposed by neutral shade cloth. Low light resulted in a large increase in hypocotyl length and specific leaf area (SLA), a reduction in juvenile biomass and a delayed onset of flowering. Phenotypic selection analysis within each light environment revealed that selection favoured large SLA under low light, but not under high light, suggesting that the observed increase in SLA was adaptive. In contrast, plasticity in the other traits measured was maladaptive (i.e. in the opposite direction to that favoured by selection in the low light environment). We detected significant additive genetic variance in plasticity in most phenotypic traits and in fitness (number of seeds). Using genotypic selection gradient analysis, we found that families with high plasticity in SLA had a lower fitness than families with low plasticity, when the effect of SLA on fitness was statistically kept constant. This indicates that plasticity in SLA incurred a direct fitness cost. However, a cost of plasticity was only expressed under low light, but not under high light. Thus, models on the evolution of phenotypic plasticity will need to incorporate plasticity costs that vary in magnitude depending on environmental conditions.  相似文献   

15.
    
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non‐fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co‐gradient variation whereby genetic differences and plasticity‐induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter‐gradient variation the majority seem to be hyperplastic whereby non‐native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non‐native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.  相似文献   

16.
    
Adaptive phenotypic plasticity is a potent but not ubiquitous solution to environmental heterogeneity, driving interest in what factors promote and limit its evolution. Here, a novel computational model representing stochastic information flow in development is used to explore evolution from a constitutive phenotype to an adaptively plastic response. Results show that populations tend to evolve robustness to developmental stochasticity, but that this evolved robustness limits evolvability; specifically, robust genotypes have less ability to evolve adaptive plasticity when presented with a mix of both the ancestral environment and a new environment. Analytic calculations and computational experiments confirm that this constraint occurs when the initial mutational steps towards plasticity are pleiotropic, such that mutant fitnesses decline in the environment to which their parents are well‐adapted. Greater phenotypic variability improves evolvability in the model by lessening this decline as well as by improving the fitness of partial adaptations to the new environment. By making initial plastic mutations more palatable to natural selection, phenotypic variability can increase the evolvability of an innovative, plastic response without improving evolvability to simpler challenges such as a shifted optimum in a single environment. Populations that evolved robustness by negative feedback between the trait and its rate of change show a particularly strong constraining effect on the evolvability of plasticity, revealing another mechanism by which evolutionary history can limit later innovation. These results document a novel mechanism by which weakening selection could actually stimulate the evolution of a major innovation.  相似文献   

17.
    
Genome‐wide heterozygosity has long been hypothesized to play a role in buffering organisms against developmental perturbations, potentially resulting in increased symmetry. If true, this could in part explain the maintenance of standing genetic variation in wild populations. Marine threespine sticklebacks (Gasterosteus aculeatus) were sampled across their eastern Pacific coastal distribution from Alaska to California and variations in asymmetry for both structural and nonstructural armor traits (lateral plates) were assessed. Structural plates consistently showed less asymmetry than nonstructural plates, but standardized measures of heterozygosity were not correlated with the extent of asymmetry expressed by a fish. Fish that were heterozygous for the major‐effect gene controlling lateral plate variation (Ectodysplasin) had higher occurrences of asymmetry, even when the individuals were phenotypically fully plated. Collectively, this suggests that heterozygosity at a major‐effect locus can have a greater impact on asymmetry than heterozygosity sampled across the genome.  相似文献   

18.
We investigated the effect of brood‐size mediated food availability on the genetic and environmental components of nestling growth in the blue tit (Parus caeruleus), using a cross‐fostering technique. We found genetic variation for body size at most nestling ages, and for duration of mass increase, but not of tarsus growth. Hence, nestling growth in our study population seems to have the potential to evolve further. Furthermore, significant genotype–environment interactions indicated heritable variation in reaction norms of growth rates and growth periods, i.e. that our study population had a heritable plasticity in the growth response to environmental conditions. The decreasing phenotypic variance with nestling age indicated compensatory growth in all body traits. Furthermore, the period of weight increase was longer for nestlings growing up in enlarged broods, while there was no difference to reduced broods in the period of tarsus growth. At fledging, birds in enlarged broods had shorter tarsi and lower weights than birds in reduced broods, but there was no difference in wing length or body condition between the two experimental groups. The observed flexibility in nestling growth suggests that growing nestlings are able to respond adaptively to food constraint by protecting the growth of ecologically important traits.  相似文献   

19.
Evolution and molecular mechanisms of adaptive developmental plasticity   总被引:1,自引:0,他引:1  
Aside from its selective role in filtering inter-individual variation during evolution by natural selection, the environment also plays an instructive role in producing variation during development. External environmental cues can influence developmental rates and/or trajectories and lead to the production of distinct phenotypes from the same genotype. This can result in a better match between adult phenotype and selective environment and thus represents a potential solution to problems posed by environmental fluctuation. The phenomenon is called adaptive developmental plasticity. The study of developmental plasticity integrates different disciplines (notably ecology and developmental biology) and analyses at all levels of biological organization, from the molecular regulation of changes in organismal development to variation in phenotypes and fitness in natural populations. Here, we focus on recent advances and examples from morphological traits in animals to provide a broad overview covering (i) the evolution of developmental plasticity, as well as its relevance to adaptive evolution, (ii) the ecological significance of alternative environmentally induced phenotypes, and the way the external environment can affect development to produce them, (iii) the molecular mechanisms underlying developmental plasticity, with emphasis on the contribution of genetic, physiological and epigenetic factors, and (iv) current challenges and trends, including the relevance of the environmental sensitivity of development to studies in ecological developmental biology, biomedicine and conservation biology.  相似文献   

20.
    
Adaptation to pollution has been studied since the first observations of heavy metal tolerance in plants decades ago. To document micro‐evolutionary responses to pollution, researchers have used phenotypic, molecular genetics, and demographic approaches. We reviewed 258 articles and evaluated the evidence for adaptive responses following exposure to a wide range of pollutants, across multiple taxonomic groups. We also conducted a meta‐analysis to calculate the magnitude of phenotypic change in invertebrates in response to metal pollution. The majority of studies that reported differences in responses to pollution were focused on phenotypic responses at the individual level. Most of the studies that used demographic assays in their investigations found that negative effects induced by pollution often worsened over multiple generations. Our meta‐analysis did not reveal a significant relationship between metal pollution intensity and changes in the traits studied, and this was probably due to differences in coping responses among different species, the broad array of abiotic and biotic factors, and the weak statistical power of the analysis. We found it difficult to make broad statements about how likely or how common adaptation is in the presence of environmental contamination. Ecological and evolutionary responses to contamination are complex, and difficult to interpret in the context of taxonomic, and methodological biases, and the inconsistent set of approaches that have been used to study adaptation to pollution in the laboratory and in the field. This review emphasizes the need for: (a) long‐term monitoring programs on exposed populations that link demography to phenotypic, genetic, and selection assays; (b) the use of standardized protocols across studies especially for similar taxa. Approaches that combine field and laboratory studies offer the greatest opportunity to reveal the complex eco‐evolutionary feedback that can occur under selection imposed by pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号