首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen‐induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.  相似文献   

2.
3.
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.  相似文献   

4.
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.  相似文献   

5.
Many microbial pathogens co‐opt or perturb host membrane trafficking pathways. This review covers recent examples in which microbes interact with host exocytosis, the fusion of intracellular vesicles with the plasma membrane. The bacterial pathogens Listeria monocytogenes and Staphylococcus aureus subvert recycling endosomal pathways of exocytosis in order to induce their entry into human cells. By contrast, entry of the protozoan pathogen Trypanosoma cruzi or the virus adenovirus into host cells involves exploitation of lysosomal exocytosis. Toxins produced by Bacillus anthracis or Vibrio cholerae interfere with exocytosis pathways mediated by the GTPase Rab11 and the exocyst complex. By doing so, anthrax or cholera toxins impair recycling of cadherins to cell–cell junctions and disrupt the barrier properties of endothelial cells or intestinal epithelial cells, respectively. Uropathogenic Escherichia coli (UPEC) is expelled from bladder epithelial cells through two different exocytic routes that involve sensing of bacteria in vacuoles by host Toll‐like receptor 4 (TLR4) or monitoring of the pH of lysosomes harbouring UPEC. The TLR4 pathway is mediated by multiple Rab GTPases and the exocyst, whereas the other pathway involves exocytosis of lysosomes. Expulsion of UPEC through these pathways is thought to benefit the host.  相似文献   

6.
Plants are resistant to most potentially pathogenic microbes. This forces plant pathogens to develop sophisticated strategies to overcome basic plant resistance, either by masking intrusion or by suppression of host defences. This is particularly true for fungal pathogens, which establish long lasting interactions with living host tissue, without causing visible damage to invaded cells. The interactions of cereal crops and Arabidopsis with powdery mildew fungi are model systems for understanding host resistance. Currently, these systems are also promoting the understanding of fungal infection by identifying fungal pathogenicity and virulence factors and host target sites. This minireview focuses on recent findings about host susceptibility and the way powdery mildew fungi might induce it.  相似文献   

7.
Abstract

Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints – focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization – are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or ‘patchwork membrane'.  相似文献   

8.
Plant‐pathogenic fungi cause diseases to all major crop plants world‐wide and threaten global food security. Underpinning fungal diseases are virulence genes facilitating plant host colonization that often marks pathogenesis and crop failures, as well as an increase in staple food prices. Fungal molecular genetics is therefore the cornerstone to the sustainable prevention of disease outbreaks. Pathogenicity studies using mutant collections provide immense function‐based information regarding virulence genes of economically relevant fungi. These collections are rich in potential targets for existing and new biological control agents. They contribute to host resistance breeding against fungal pathogens and are instrumental in searching for novel resistance genes through the identification of fungal effectors. Therefore, functional analyses of mutant collections propel gene discovery and characterization, and may be incorporated into disease management strategies. In the light of these attributes, mutant collections enhance the development of practical solutions to confront modern agricultural constraints. Here, a critical review of mutant collections constructed by various laboratories during the past decade is provided. We used Magnaporthe oryzae and Fusarium graminearum studies to show how mutant screens contribute to bridge existing knowledge gaps in pathogenicity and fungal–host interactions.  相似文献   

9.
As in other eukaryotes, protein kinases (PKs) are generally evolutionarily conserved and play major regulatory roles in plant pathogenic fungi. Many PKs have been proven to be important for pathogenesis in model fungal plant pathogens, but little is currently known about their roles in the pathogenesis of cereal rust fungi, devastating pathogens in agriculture worldwide. Here, we report on an in planta highly induced PK gene PsSRPKL from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), one of the most important cereal rust fungi. PsSRPKL belongs to a group of PKs that are evolutionarily specific to cereal rust fungi. It shows a high level of intraspecies polymorphism in the kinase domains and directed green fluorescent protein chimers to plant nuclei. Overexpression of PsSRPKL in fission yeast induces aberrant cell morphology and a decreased resistance to environmental stresses. Most importantly, PsSRPKL is proven to be an important pathogenicity factor responsible for fungal growth and responses to environmental stresses, therefore contributing significantly to Pst virulence in wheat. We hypothesize that cereal rust fungi have developed specific PKs as pathogenicity factors for adaptation to their host species during evolution. Thus, our findings provide significant insights into pathogenicity and virulence evolution in cereal rust fungi.  相似文献   

10.
The adhesion of fungi to host cells is an important area of study. Knowledge of the molecular mechanisms involved in these interactions can be used to devise methods to interfere with them. Similar to many pathogens, loss of fungal adhesion to epithelial or endothelial cell surfaces results in a marked decrease in virulence when evaluated in both in vivo and in vitro disease models. This review emphasizes literature from the past year and focuses on the molecular mechanisms by which fungi in the genera Candida, Cryptococcus, Sporothrix, Pneumocystis, and Aspergillus adhere to epithelial and/or endothelial host surfaces. The methodologies used to conduct these studies are also discussed.  相似文献   

11.
高飞雁  李玲  王教瑜  王艳丽  孙国昌 《遗传》2017,39(10):908-917
过氧化物酶体(peroxisomes)是一类真核生物中普遍存在的细胞器,参与β-氧化、乙醛酸循环等多种重要的生化代谢。研究表明,过氧化物酶体在植物病原真菌侵染寄主过程中具有着举足轻重的作用。参与过氧化物酶体形成与增殖的基因,通常称为PEX基因。近年来,越来越多的PEX基因在植物病原真菌中得到鉴定,真菌过氧化物酶体的形成机制及其在植物病原真菌生长发育和致病过程中的作用越来越受到研究者的关注。本文围绕PEX 基因在过氧化物酶体形成中的作用、对过氧化物酶体相关生化代谢的影响,以及与植物病原真菌生长发育和致病性的关系进行了综述,以期为植物病原真菌致病机理研究和病害防控提供借鉴和参考。  相似文献   

12.
韩琦  王铌翔 《微生物学报》2024,64(1):98-107
抑制真菌细胞壁的合成常作为防治真菌感染的安全有效手段。几丁质是真菌细胞壁及隔膜的重要结构成分,几丁质合酶是催化几丁质合成的关键酶。真菌细胞中几丁质合酶家族的不同成员在调控几丁质的合成中存在着差异,因此产生不同的生物学效应。本文通过综述几丁质合酶在人体三大条件致病真菌白色念珠菌、烟曲霉、新生隐球菌中的研究进展,分析了几丁质合酶对真菌致病性影响的机制,总结了几丁质合酶调控真菌细胞增殖、形态转换、病原菌与宿主的相互作用和细胞壁损伤诱导的补偿效应,展望了抗真菌感染的新策略及关于真菌几丁质合酶的未来研究方向。  相似文献   

13.
铁死亡是一种铁离子参与、使细胞内脂质过氧化物积累到致死水平的新型程序性细胞死亡形式。目前,铁死亡的作用与机制在动物细胞已广泛、深入研究,而真菌铁死亡研究才刚刚起步。本综述旨在探讨铁离子稳态调控因子、膜脂抗氧化系统及脂质过氧化酶促系统这3种已知的铁死亡调控途径,列举它们在真菌中的同源蛋白的生物学功能。我们推测,病原真菌细胞铁死亡也许广泛参与其生长发育和致病性方面的调控,铁死亡调控通路有可能成为真菌病害防控的新的潜在靶标。  相似文献   

14.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

15.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   

16.
In Australia, fungi associated with larvae of the biological control agent Cactoblastis cactorum may contribute to the control of the exotic weed pricklypear (Opuntia inermis). C. cactorum larvae were assessed for their ability to vector pathogenic fungi into O. inermis by the infestation of larvae with fungal suspensions. Six fungal isolates caused disease after being carried into the host on external surfaces of larvae, and propagules of one isolate (UQ5109) initiated disease after being transferred from the cladode epidermis into the host by larvae feeding on the plant. Scanning electron microscopy revealed extensive hyphal growth on the external surfaces of larvae infested with several of the isolates. Fungi isolated from field-grown O. inermis cladodes were tested for pathogenicity to this plant in an in vivo plant assay. In total, 152 isolates were screened, 22 of which infected the host in pathogenicity tests. Only 1 (UQ5115) infected undamaged host tissue, whereas the remainder required the host to be wounded before infection could proceed. The majority of isolates were only weakly pathogenic, even when inoculated via wounds, suggesting that most were either saprophytes or weak parasites. This study demonstrates that it is possible for larvae of C. cactorum to transmit fungal pathogens into O. inermis tissue and it has provided a sound basis for future field work to determine the contribution that fungi make to the control of O. inermis.  相似文献   

17.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   

18.
Rice planthoppers are notorious plant sap‐feeding pests which cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sex, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers.  相似文献   

19.
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.  相似文献   

20.
自噬在病原真菌生殖中的作用   总被引:1,自引:0,他引:1  
自噬是真核生物中重要且高度保守的蛋白降解过程。在此过程中,细胞中的细胞器、长寿蛋白及其他大分子物质被双层膜的自噬体包裹并运送至降解细胞器中进行降解并重新利用。自噬在病原真菌诸如细胞分化、营养动态平衡以及致病性等各种细胞过程中起重要作用。在本综述中,我们简要介绍了自噬过程,并以人体病原真菌新生隐球菌为例介绍了病原真菌的有性生殖过程;同时我们也总结了目前模式病原真菌中自噬相关基因的研究情况以及自噬调控病原真菌无性和有性生殖的可能机理;最后我们总结全文并讨论了未来自噬调控真菌有性生殖机理研究的工作方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号