首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
榆木蠹蛾幼虫龄数的确定   总被引:4,自引:0,他引:4  
为弄清榆木蠹蛾Holcocerus vicarius Walker幼虫的发育情况及预测其发生时间, 通过测量榆木蠹蛾幼虫的头壳宽、 体长、 体宽、 前胸背板宽、 上颚长和上颚宽, 运用Crosby生长法则和线性回归方法分析来找出判定幼虫龄数的最佳形态指标, 推断其幼虫的龄数。结果表明: 各龄幼虫头壳宽平均值的变异系数和Crosby指数最小, 其他5项指标的变异系数和Crosby指数较大, 头壳宽为最佳分龄指标。根据头壳宽将榆木蠹蛾幼虫分为20龄, 不同龄幼虫头壳宽值符合Dyar定律提出的幼虫头壳宽增长规律, 头壳宽和龄数的回归方程为y=0.233+1.686x+0.127x2-0.005x3 (R2=0.996)。榆木蠹蛾幼虫龄数的确定为研究其发生规律、 生物学习性及进行综合防治提供依据。  相似文献   

2.
绿豆象幼虫虫龄的划分及末龄幼虫头部形态和感器观察   总被引:1,自引:0,他引:1  
【目的】明确绿豆象Callosobruchus chinensis幼虫的龄期,了解其末龄幼虫头部感受器的种类、形态和分布。【方法】测量绿豆象幼虫体长、头壳宽和上颚宽,根据所得数据的频次分布图、关系拟合结果和戴氏法则确定绿豆象最佳分龄指标,明确幼虫虫龄数,并利用Crosby生长法则和线性回归的方法进行验证;采用扫描电镜对末龄幼虫头部形态及感受器进行观察。【结果】绿豆象体长、头壳宽和上颚宽的频次分布均呈显著的4个峰,因此推断绿豆象幼虫为4个虫龄。各龄的体长变幅分别为1.581~2.556, 2.406~3.381, 3.381~4.281和4.206~4.881 mm,头壳宽度变幅分别为0.444~0.689, 0.654~0.934, 0.934~1.179和1.144~1.389 mm,上颚宽变幅分别为0.080~0.256, 0.234~0.344, 0.322~0.542和0.542~0.652 mm。体长、头壳宽和上颚宽均符合戴氏法则和Crosby生长法则,并呈现明显的线性关系,因此体长、头壳宽和上颚宽可作为绿豆象幼虫龄期划分的重要指标。头壳宽的Crosby指数均小于体长和上颚宽的Crosby指数,且头壳宽与体长测量值的对数值与幼虫龄期的相关系数要优于上颚宽测量值的对数值与幼虫龄期的相关系数,因此可将头壳宽作为最佳分龄指标。绿豆象末龄幼虫头部感器共有锥形感器、毛形感器、瓶形感器、刺形感器、板形感器、栓锥形感器和坛形感器7种感器,主要分布于触角、下颚须、上唇和上颚。【结论】绿豆象幼虫分龄形态指标和头部形态观察为研究其行为活动及综合防治提供理论基础。  相似文献   

3.
双条杉天牛幼虫龄数的划分(鞘翅目:天牛科)   总被引:1,自引:0,他引:1       下载免费PDF全文
双条杉天牛 Semanotus bifasciatus Motschulsky 是危害我国侧柏 Platycladus orientalis 和圆柏 Sabina chinensis 的重要钻蛀性害虫,其幼虫龄数及最佳分龄指标的确定是进一步研究其生物学特性、发生规律的基础.本研究通过室内木段饲养法获取不同发育阶段的双条...  相似文献   

4.
Eucryptorrhynchus brandti (Harold) (Coleoptera: Curculionidae) is a major pest of Ailanthus altissima (Mill.) Swingle (Simaroubaceae), commonly known as tree-of-heaven, and A. altissima var. Qiantouchun in China. It is considered a potential biological control agent for tree-of-heaven in North America. The aim of this study was to use a frequency distribution method to determine the instars of field-collected larvae of E. brandti. We collected larval samples of various sizes from both the field and the laboratory and measured five morphological variables, including antenna spacing, mandible width, head-capsule width, ocellus spacing, and pronotum width. Based on the results of a frequency distribution method and Dyar’s rule, the larvae of E. brandti were divided into seven instars. Of the five variables measured, the width of the head capsule provided the best measurement for determining instar stage. The regression equation between the head-capsule widths and the instar number was y?=?0.324e0.096x (R2?=?0.970).  相似文献   

5.
【目的】本实验拟为田间准确快速判别菱角水螟Parapoynx crisonalis(Walker)幼虫龄期提供一种新方法,以便监测其发生规律、预测其发生时间。【方法】本研究通过对幼虫头壳宽、复眼距、体宽和体长4项外部形态指标的测量,运用Crosby生长法则和线性回归分析方法,结合各项指标的频次分布进行分析。【结果】各龄幼虫头壳宽平均值的变异系数和Crosby指数最小,为判别幼虫龄期的最佳分龄指标,幼虫期共分为5龄,1~5龄的头壳宽分别为(0.2493±0.0053)、(0.3454±0.0018)、(0.5079±0.0031)、(0.7419±0.0190)和(1.1287±0.0369)mm,其与龄期数呈线性关系。通过实验室饲养观察菱角水螟幼虫蜕皮次数验证该虫幼虫期分为5个龄期。【结论】头壳宽为判定菱角水螟幼虫龄期的最佳指标,复眼距次之。  相似文献   

6.
The number of larval instars of Simulium (Hemicnetha) rubrithorax Lutz (Diptera: Nematocera) was determined using the lateral length of the head capsule. In this study 1,035 larvae, of different sizes, were measured (639 from the state of Roraima and 396 from the state of Minas Gerais). A frequency distribution analysis was carried out on the measurements of the lateral length of the head capsule to determine the number of larval instars. The limits of each instar were defined by the lower frequency of the measurements falling in a range of values, by the presence of the "egg burster" that characterizes the first larval instar, and by the developmental stage of the gill histoblast. The determination of the instar number was tested using a Student's t-test (p < 0.05), the Dyar rule and the Crosby growth rule. The results indicate the existence of 7 larval instars for this species, although this result was not in accordance to the Crosby rule. Last-instar larvae from two widely separated geographical populations (Roraima and Minas Gerais), collected in habitats with different water temperature were compared and no differences (p > 0.05) were observed between them.  相似文献   

7.
Two methods to verify whether head width measurements fit Dyar's rule were evaluated for the separation of instars of the cat flea, Ctenocephalides felis (Bouché). Individual rearing was a reliable method of determining larval instar but was labor-intensive. The mean observed head widths were significantly different for each instar (first instar, 0.164 mm; second instar, 0.201 mm; third instar, 0.260 mm) and showed no sexual dimorphism. Head capsule width increased roughly 25% from instar to instar with geometrically progressing growth in accordance with Dyar's rule. However, head capsule width cannot be used to determine the instar of randomly selected larvae because the measurements overlap broadly between instars.  相似文献   

8.
【目的】油茶象 Curculio chinensis Chevrolat是我国特有木本油料树种--油茶 Camellia meiocarpa 的专性蛀果害虫,常导致大量落果。幼虫准确分龄是其生物学、生态学及防控研究的基础,但对钻蛀性昆虫来说,这非常困难。本研究旨在明确研究样地油茶象幼虫龄数及各龄形态指标极差,试图探讨确定钻蛀性昆虫龄数及合理划分虫龄的可靠方法。【方法】收集了1 253头不同发育阶段的幼虫,测量头壳宽、头壳长和上颚宽3个形态指标,用多峰拟合分析频次分布资料,结合戴氏法则判断幼虫龄数。以正态曲线交点作为相邻虫龄分界点,计算各龄幼虫测量指标的平均值、极差、增长率及误判率。【结果】头壳宽、头壳长和上颚宽频次分布多峰拟合均呈显著的5个正态峰(P<0.01),对应5个虫龄;头壳宽、头壳长和上颚宽3个形态指标均以对3龄幼虫的误判率最大,分别为6.04%,7.03%和6.51%,而对其他虫龄误判率均小于5%,提示3个形态指标均可作为油茶象虫龄划分的可靠依据,以头壳宽最佳。各龄幼虫头壳宽、头壳长及上颚宽增长率依次为1.41~1.54,1.43~1.61及1.44~1.64,基本恒定,其平均值的自然对数与虫龄均呈极显著线性正相关(P<0.01),油茶象幼虫头壳生长呈间断性几何级数增长,符合戴氏法则。【结论】油茶象幼虫具5个虫龄,不同于前人报道的仅4个虫龄;多峰拟合可用于确定钻蛀性昆虫或野外种群的龄数,特别是为相邻虫龄形态指标重叠区虫龄划分提供有效方法。  相似文献   

9.
1. In insects, instar determination is generally based on the frequency distribution of sclerotised body part measurements. Commonly used univariate methods, such as histograms and univariate kernel smoothing, are not sufficient to reflect the distribution of the measurements, because development of sclerotised body parts is multidimensional. 2. This study used an adaptive bivariate kernel smoothing method, based on 10 pairs of separating variables, to differentiate instars of Austrosimulium tillyardianum (Diptera: Simuliidae) larvae in two‐dimensional space. A variable bandwidth matrix was used and separation lines between instars were defined. Using the Crosby growth ratio, Brooks' rule and the new standard recently proposed, larvae were separated into nine instars. It was found that, using the bivariate kernel smoothing method, the clustering accuracy and determination of separation lines as instar class limits were higher than those associated with the univariate kernel smoothing method. With the exceptions of the paired separating variables, head capsule length and antennal segment 3 length (AS3L), the mean probabilities of correct classifications was > 85%. The pair of separating variables that yielded the greatest classification accuracy comprised mandible length (ML) and AS3L, which had mean probabilities of 0.8984. The clustering accuracy was higher for early‐ and late‐instar larvae, but lower for instars 6 and 7. The adaptive bivariate kernel smoothing method was better than univariate methods for instar determination, especially in the detection of divisions between instars and identification of a larval instar.  相似文献   

10.
Internode borer (INB), Chilo sacchariphagus indicus has been a serious threat to sugarcane cultivation for more than six decades. We have determined the number of instars for INB through frequency distribution analysis of cast head capsule widths. This is the first report, which proves that the INB of sugarcane passes through five larval instars to attain its pupal stage. The number of instars determined by kernel density estimation was in corroboration with the number of instars observed in the laboratory. The mean Dyar’s ratios for both the instar-wise observed data on head capsule widths and the theoretical data derived from the frequency distribution analysis were one and the same (1.46). Linear regression (R2 > 0.998) between the instar numbers and their corresponding mean head capsule widths reaffirmed that no instar has been overlooked. Further, the theoretical misclassification probabilities of 0.16–1.97% indicates that the chance of misidentifying an INB instar into its preceding or succeeding one is very remote. Since the determination of the exact number of instars in a pest species is a pre-requisite for developing appropriate management strategies, the outcome of this study holds great promise in managing the most notorious Crambid borer of sugarcane.  相似文献   

11.
明确圆柏大痣小蜂Megastigmus sabinae Xu et He(1989)幼虫的最佳分龄指标、幼虫龄数与各虫龄龄期,为探明圆柏大痣小蜂幼虫期的生长规律奠定基础。本研究通过测量圆柏大痣小蜂幼虫上颚关节宽、头宽、体宽和体长4个形态指标,利用频次分布推测幼虫龄数,运用Crosby生长法则和线性回归的方法判断圆柏大痣小蜂幼虫的最佳分龄指标并验证幼虫的龄数。将最佳分龄指标作为龄期判断依据,根据测量结果对其幼虫龄期进行划分。圆柏大痣小蜂幼虫共划分为5个龄期,上颚关节宽为圆柏大痣小蜂幼虫龄期划分的最佳形态指标,各龄幼虫的历期约为30 d、200 d、30 d、30 d、15 d,共305 d,主要以2龄越冬。  相似文献   

12.
【目的】本研究旨在找出区分西方角蝇Haematobia irritans和截脉角蝇H.titillans幼虫龄期划分标准,为准确鉴定两种角蝇各龄幼虫,研究斯氏副柔线虫在角蝇体内的发育过程,以及制定防控骆驼斯氏副柔线虫病的有效措施等奠定基础。【方法】采用实验室人工孵育两种角蝇幼虫的方法,分别测量不同发育阶段幼虫的虫体长、咽骨体长和咽骨体宽3项指标,利用SPSS Statistics 19.0统计软件对数据进行处理,结合Crosby生长法则和线性回归的方法进行分析,比较两种角蝇幼虫之间差异,以确定两种角蝇幼虫最佳龄期划分标准。【结果】结果表明,两种角蝇的幼虫均分为3龄,咽骨体是两种角蝇幼虫龄期划分的特征性结构,两种角蝇各龄幼虫相同指标的测量值随龄期的增长呈现出相同的增长规律。咽骨体长是划分两种角蝇幼虫龄期的最佳测量指标,咽骨体宽可作为分龄的辅助指标;两种角蝇相邻龄期幼虫的体长变化范围存在相互重叠,不能准确划分角蝇幼虫龄期。【结论】研究表明通过西方角蝇和截脉角蝇幼虫咽骨体的形态特征可简便、快速和准确地鉴定两种角蝇幼虫的龄期。  相似文献   

13.
本文采用了人工饲养定期取样的方法,测定了背摇蚊Chironomus dorsalis(Anderson)幼虫的龄数以及各龄的龄期。分别测量不同发育阶段幼虫的头壳长、颏中齿顶端至冠突前缘间距离、头壳宽、颏宽、颏中齿宽、触角长、触角基节长、触角比(触角基节与其余各节的长度之比)等8项指标,以期得到区分和判定幼虫虫龄的最佳形态特征及指标。运用频次分布、均差分析和回归分析对8项指标测量数据进行统计分析,结果表明,背摇蚊幼虫可分4龄,触角长可作为理想的分龄特征和分龄指标,其次是颏中齿顶端至冠突前缘间距离和颏宽。利用种群众数龄期法计算1-4龄幼虫的平均龄期分别为1.32 d、2.00 d、7.51 d和8.39 d,幼虫期共为19.22 d。  相似文献   

14.
The aim of this research was to assess the larval instar number of Pissodes castaneus (De Geer) and to facilitate the study of its biology by identifying a reliable method to determine the instar of individual larvae. The larvae of this weevil were collected in central Italy in 2004, and their head capsules were measured by means of a binocular microscope. Head capsule width and length data were analyzed using Hcap, a computer program that use the distribution of size measures to determine instar separation rules. To determine instar number, the Gaines and Campbell method, which represents the perfect geometric progression of size measures (Dyar's rule) by a regression line, was also used. This study identified four larval instars of P. castaneus and found that head capsule widths and lengths followed Dyar's rule and reliably distinguished instars.  相似文献   

15.
为了明确蜂巢奇露尾甲Aethina tumida Murray幼虫的龄期和最佳分龄指标,本研究分别对不同发育阶段幼虫的头壳宽进行测量,根据各指标的频次分布结果初步确定龄期,并运用Crosby生长法则和线性回归方法进行验证分析。结果表明:蜂巢奇露尾甲幼虫可分为4龄,1~4龄头壳宽度平均值分别为0.1842 mm、0.2942 mm、0.4613 mm、0.7280 mm;此外,本文还对蜂巢奇露尾甲幼虫的形态特征进行描述。本文为研究蜂巢奇露尾甲的发生规律、生物学特性及制定防治措施等提供参考。  相似文献   

16.
周斌  周国英  杨权  董文统  李小敏  周莎  何苑皞 《昆虫学报》2015,58(11):1253-1261
【目的】棕斑澳黄毒蛾Orvasca subnotata Walker是于降香黄檀Dalbergia odorifera T. Chen人工林中新发现的一种食叶害虫,其生物学特性描述和龄期判定是虫害预测预报与林间防治的重要依据。【方法】本研究通过定期林间采样的方法,对棕斑澳黄毒蛾不同发育阶段的形态特征及生活史和生活习性进行调查; 并通过测量头宽、前胸毛瘤宽和体长3项分龄指标,测定棕斑澳黄毒蛾幼虫的龄期。【结果】本文报道了棕斑澳黄毒蛾不同发育阶段的形态特征、生活史和生活习性。研究结果表明,棕斑澳黄毒蛾幼虫随龄期增长,前胸逐渐变黑,腹部背线和翻缩腺颜色逐渐加深,特征逐渐变得明显。通过频次分析统计,测得棕斑澳黄毒蛾幼虫龄数为5龄。头宽和前胸毛瘤宽可作为分龄指标,头宽优于前胸毛瘤宽,且前胸毛瘤宽与头宽呈直线关系(y=0.994x-0.114,R=0.999)。体长经统计检验,符合Dyar氏法则,但区域重叠明显,不宜作为分龄指标。【结论】本研究确定了棕斑澳黄毒蛾的生物学特性及幼虫虫龄,可为林间防治提供参考依据。  相似文献   

17.
董易之  徐淑  陈炳旭  姚琼  陈耿民 《昆虫学报》2015,58(10):1108-1115
【目的】荔枝蒂蛀虫 Conopomorpha sinensis Bradley是荔枝龙眼上的主要害虫,以幼虫蛀果为害。本研究旨在明确荔枝蒂蛀虫幼虫龄数及不同温度下各虫态和各龄幼虫的发育历期,为该虫发生规律、预测预报和防控技术研究提供基础生物学数据。【方法】定期收集处于不同发育时期的荔枝蒂蛀虫幼虫,测量幼虫头壳宽度,对其进行频次分析,Crosby指数验证和曲线回归分析,以确定幼虫龄数。通过室内群体饲养的方法,测定了17~38℃区间8个温度梯度下荔枝蒂蛀虫各虫态和各龄幼虫的发育历期,并采用线性日度模型对其发育速率与温度的关系进行回归分析。【结果】根据荔枝蒂蛀虫幼虫头壳宽度频次分布图,其头壳宽度的频次分布可明显分为5个区域,说明其幼虫分5个龄期,符合Dyar定律。1-5龄幼虫的头壳宽度分别为:0.092~0.120, 0.140~0.206, 0.217~0.319, 0.356~0.523和0.582~0.728 mm。温度对荔枝蒂蛀虫卵、各龄幼虫和蛹的发育历期有明显影响,其发育历期均随温度的升高而缩短,其发育速率均与温度呈显著正相关,并符合线性回归模型。在20~32℃,荔枝蒂蛀虫可完成世代发育;在17℃时,该虫只能发育至3龄幼虫;在35℃时,蛹多不能羽化;在38℃时,卵多不能孵化。在20~32℃,其世代历期为41.16~19.34 d,蛹期为12.74~5.38 d,而产卵前期为4.75~4.22 d,温度对产卵前期无明显影响。在20~35℃,荔枝蒂蛀虫幼虫可正常发育,其1龄幼虫龄期为4.50~1.17 d,2龄幼虫期为2.09~1.40 d,3龄幼虫期为2.84~1.00 d,4龄幼虫期为3.41~1.18 d,5龄幼虫期为3.00~1.37 d,预蛹期为2.41~0.69 d。在17~35℃,荔枝蒂蛀虫卵可正常孵化,其卵期为7.73~2.09 d。【结论】荔枝蒂蛀虫幼虫分5个龄期,不同于前人所报道的4个龄期。在20~32℃温度范围内,卵、各龄幼虫和蛹的发育历期均随温度升高而缩短。本研究结果有助于荔枝蒂蛀虫预测预报方案的制定和实施。  相似文献   

18.
1. Ontogenetic changes during the life cycle of aquatic insects are important not only in life‐history studies but also in evaluating food‐web structure. They require information on the growth and number of larval instars but such information is lacking for many species, including Plecoptera. Therefore, the chief objectives of the present study were to determine inter‐ and intra‐specific differences in the number of larval instars in British populations of 24 species of stoneflies, to test Dyar’s hypothesis that growth followed a geometric progression, and to synthesise this information with previously published values for four British species. 2. Larvae were reared at constant temperatures in the laboratory from eggs from 63 populations (one to six populations per species). First instars from each population were divided into three batches and each batch was reared at one of three constant temperatures. For each species, the rearing temperature and source population had no significant effect on the mean size of each larval instar. 3. The relationship between the geometric mean length of each instar and instar number was well described by an exponential equation (P < 0.001, r2 > 0.9 for all species), thus supporting Dyar’s hypothesis. Only one species, Brachyptera risi, had the same number of instars for males and females (12–13). For the other 15 herbivorous species and the four smaller carnivorous ones, the number of instars was higher for females than males (range 11–16 for males, 12–17 for females). The larger size of the females was due to their additional instars, not a sex difference in growth rates. In contrast, there was a clear growth separation of the sexes after the 9th or 10th instar for the four largest carnivores. The number of larval instars was highest for these four species (range 16–19 for males, 18–23 for females), and females were much larger than males. 4. A multiple regression equation with data from the present and previous studies (n = 27) showed that variability in the mean length of the first instar and the maximum number of larval instars for each species accounted for 88% and 91% of the variability in the mean length of the final instar for males and females, respectively. 5. Values for Plecoptera in other countries were in general agreement with those in the present study, especially in the same families. Two old, but widely quoted, high values are doubtful. The present study and four previous ones provide a sound basis for ontogenetic studies on 28 species of Plecoptera and their role in aquatic ecosystems.  相似文献   

19.
The potato tuber moth (PTM),Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is a major pest of processing tomatoes,Lycopersicon esculentum Mill. (Solanaceae), in Israel. The larvae penetrate the tomato fruit through the stem end and present a serious threat to crop quality. Foliage and fruit samples were taken in nine commercial tomato fields located in Israel's three main tomato growing areas, two of which are potato growing areas as well. PTM was not found where potatoes were absent. Potato harvest in nearby fields was found to be the most significant factor affecting seasonal trends in PTM population density in tomatoes. All four larval instars were found in foliage on all sampling dates. Significantly higher proportions of first instars were found during the population density increase which followed potato harvest. Damaged fruits did not contain first instar larvae, indicating that PTM never undergoes complete development within tomato fruit. Fruit damage levels at harvest were positively correlated to the peak mean population densities on foliage and the date they were observed. In tomato fields not adjacent to potatoes, infestation was first observed at the edge of the field. Both before and after the potato harvest in nearby fields, population density at the edge of the field was significantly higher than at the center. In tomato fields adjacent to potatoes, no significant differences were found between population densities at the edge and center before the potatoes were harvested. After the potato harvest, population density at the center of tomato fields was higher than at the edge. Deceased, October 1988  相似文献   

20.
The life cycle and several life parameters of the zoophytophagous predator Engytatus varians (Distant) (Heteroptera: Miridae), including nymphal growth according to Dyar’s rule, were examined in the laboratory. The egg, nymph (five instars), and adult stages were 9.20, 17.36, and 19.02?d in length, respectively. The growth ratio for nymphs was consistent with Dyar’s rule based on the lengths of the femora of the forelegs, the tibiae and femora of the middle legs, and the antennae. Some biological characteristics of E. varians were also evaluated when the mirid was fed three different diets (B. cockerelli third instars, Sitotroga cerealella Olivier [Lepidoptera: Gelechiidae] eggs, and a mixture of both instars and eggs). The length of the nymphal stage was three days longer on a diet of only S. cerealella eggs than when the mirids were fed the third instars of B. cockerelli only or a mixture of both. The sex ratio was not affected by the type of diet. Nymphs of E. varians consumed B. cockerelli nymphs (80–85) when fed third instars only and third instars?+?S. cerealella eggs, respectively. The potential use of this predator as a biological control agent of B. cockerelli is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号