首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromium (Cr) is very toxic to both humans and plants. This investigation aimed to understand the physiological and molecular responses of rice seedlings to Cr stress. Cr toxicity did not significantly affect morphological features and Cr accumulation in roots and shoots in Pokkali but not in BRRI 51, although there was a reduction in chlorophyll concentration in leaves of both genotypes. These results imply that Pokkali has mechanisms to cope with Cr supplementation. We therefore performed quantitative real‐time PCR on the expression pattern of two chelator genes, OsPCS1 and OsMT1, but there were no significant changes in expression in roots and shoots of Pokkali and BRRI 51 following Cr stress. This suggests that there was no metal sequestration following heavy metal stress in roots of these genotypes. Moreover, no expression of two heavy metal transporter genes, OsHMA3 and OsNRAMP1, was induced after Cr stress in roots and shoots, suggesting that these transporter genes are not induced by Cr stress or might not be involved in Cr uptake in rice. We also performed a targeted study on the effect of Cr on Fe uptake mechanisms. Our studies showed a consistent reduction in Fe uptake, Fe reductase activity and expression of Fe‐related genes (OsFRO1 and OsIRT1) under Cr stress in both roots and leaves of Pokkali. In contrast, these parameters and genes were significantly increased in Cr‐sensitive BRRI 51 under Cr stress. The results confirm that limiting Fe uptake through the down‐regulation of Fe reductase and Fe transporter genes is the main strategy of Cr‐tolerant Pokkali to cope with Cr stress. Finally, increased CAT, POD and GR activity and elevated glutathione and proline synthesis might provide strong antioxidant defence against Cr stress in Pokkali. Taken together, our findings reveal that Cr stress tolerance in rice (Pokkali) is not related to metal sequestration but is associated with reduced Fe transport and increased antioxidant defence.  相似文献   

2.
  • Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses.
  • This study applied Ca in various forms (Ca acetate and CaCl2) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice.
  • The results showed that supplementation of Cd‐contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto‐inhibited Ca2+‐ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up‐regulate the low‐affinity cation transporter (OsLCT1) and down‐regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance‐associated macrophage protein 5 (Nramp5) and Zn/Cd‐transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd‐contaminated soil inhibited Cd uptake of rice.
  • Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.
  相似文献   

3.
Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier‐like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed‐setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) ‐localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin‐related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.  相似文献   

4.
To overcome the salinity‐induced loss of crop yield, a salinity‐tolerant trait is required. The SUV3 helicase is involved in the regulation of RNA surveillance and turnover in mitochondria, but the helicase activity of plant SUV3 and its role in abiotic stress tolerance have not been reported so far. Here we report that the Oryza sativa (rice) SUV3 protein exhibits DNA and RNA helicase, and ATPase activities. Furthermore, we report that SUV3 is induced in rice seedlings in response to high levels of salt. Its expression, driven by a constitutive cauliflower mosaic virus 35S promoter in IR64 transgenic rice plants, confers salinity tolerance. The T1 and T2 sense transgenic lines showed tolerance to high salinity and fully matured without any loss in yields. The T2 transgenic lines also showed tolerance to drought stress. These results suggest that the introduced trait is functional and stable in transgenic rice plants. The rice SUV3 sense transgenic lines showed lesser lipid peroxidation, electrolyte leakage and H2O2 production, along with higher activities of antioxidant enzymes under salinity stress, as compared with wild type, vector control and antisense transgenic lines. These results suggest the existence of an efficient antioxidant defence system to cope with salinity‐induced oxidative damage. Overall, this study reports that plant SUV3 exhibits DNA and RNA helicase and ATPase activities, and provides direct evidence of its function in imparting salinity stress tolerance without yield loss. The possible mechanism could be that OsSUV3 helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in transgenic rice.  相似文献   

5.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up‐regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)‐limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)‐limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)‐limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.  相似文献   

6.
7.
Genetic variation in protoplast-derived rice (Oryza sativa L.) plants was characterized using first and second generation selfed progenies. A total of 133 regenerated plants were obtained from ten protoplasts of the japonica rice cultivar Nipponbare. Sixty two regenerated plants which set enough seeds for the subsequent field tests at the next generation and were derived from five protoplasts were selected, and their selfed seeds were used as the first selfed-seed progeny generation). Fifteen plants were selected from each of the 15 lines, and their selfed seeds were used for tests at the generation. Thirty seven lines (60%) segregated plants with detrimental mutant characters of yellow-green phenotype, dwarf stature, dense and short panicle, or low seed fertility. According to the segregation patterns in the lines having mutated plants among those originated from the same protoplasts, the stages of mutation induction were estimated. Additionally, five quantitative traits were changed in almost all and lines. Varied quantitative traits of heading date, number of spikelets per panicle, and seed fertility, were in a heterozygous state. However, culm and panicle lengths showed high uniformity, whereas reduced culm and panicle lengths were caused by mutational changes in polygenes and/or multiple genes. Received: 20 March 1996 / Accepted: 21 June 1996  相似文献   

8.
Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome‐wide rice protein–protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet ) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non‐transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein–protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain‐mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet‐based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2–11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice.  相似文献   

9.
  • Metabolism of strigolactones (SLs) can improve the efficiency of nutrient use by regulating the development of roots and shoots in crops, making them an important research focus for molecular breeding. However, as a very important plant hormone, the molecular mechanism of SL signal transduction still remains largely unknown.
  • In this study, we isolated an indica high‐tillering dwarf mutant 4 (htd4), a spontaneous mutant of rice, from the restorer line Gui99.
  • Mapping and sequencing analysis showed that htd4 was a novel allelic mutant of D14, in which a single base substitution forms a premature termination codon. Quantitative RT‐PCR analyses revealed that expression levels of the genes D10, D17, D27, D3 and D14 increased significantly, while expression of D53 decreased in htd4, compared with the wild type. A subcellular localisation assay showed that the mutant of D14 in htd4 did not disturb the normal localisation of D14 proteins. However, a BiFC assay suggested that the mutant‐type D14 could not interact with D3. Additionally, compared with other D14 allelic mutants, htd4 was the first mutant of D14 discovered in indica, and the differences in many yield traits such as plant height, seed‐setting rate and grain sizes between htd4 and the wild type were less than those between other D14 allelic mutants and the wild type.
  • Therefore, htd4 is considered a mild phenotype allelic mutant of D14. We conclude that the absence of functional D14 caused the high‐tillering dwarf phenotype of htd4. Our results may provide vital information for research on D14 function and the application of htd4 in molecular breeding.
  相似文献   

10.
11.
12.
Changes in abscisic acid (ABA) contents in Cd-treated rice (Oryza sativa L.) seedlings of two cultivars were investigated. On treatment with CdCl2, the ABA content rapidly increased in the leaves and roots of Cd-tolerant cultivar (cv. Tainung 67, TNG67) but not in the Cd-sensitive cultivar (cv. Taichung Native 1, TN1). The reduction of transpiration rate of TN1 caused by Cd was less than that of TNG67. Exogenous application of ABA reduced transpiration rate, decreased Cd content, and enhanced Cd tolerance of TN1 seedlings. Exogenous application of the ABA biosynthesis inhibitor, fluridone, reduced ABA accumulation, increased transpiration rate and Cd content, and decreased Cd tolerance of TNG67 seedlings. Fluridone effect on Cd toxicity of TNG67 seedlings was reversed by the application of ABA. The roles of endogenous ABA in Cd tolerance of rice seedlings are discussed and suggested.  相似文献   

13.
Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding‐intolerant) and lowland (Low88, flooding‐tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding‐tolerant type (T‐type) or a flooding‐intolerant type (I‐type). The OsCBL10 T‐type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I‐type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding‐tolerant rice cultivars containing the OsCBL10 T‐type promoter have shown lower Ca2+ flow and higher α‐amylase activities in comparison to those in flooding‐intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild‐type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade.  相似文献   

14.
15.
In agricultural soils, amino acids can represent vital nitrogen (N) sources for crop growth and yield. However, the molecular mechanisms underlying amino acid uptake and allocation are poorly understood in crop plants. This study shows that rice (Oryza sativa L.) roots can acquire aspartate at soil concentration, and that japonica subspecies take up this acidic amino acid 1.5‐fold more efficiently than indica subspecies. Genetic association analyses with 68 representative japonica or indica germplasms identified rice Lysine‐Histidine‐type Transporter 1 (OsLHT1) as a candidate gene associated with the aspartate uptake trait. When expressed in yeast, OsLHT1 supported cell growth on a broad spectrum of amino acids, and effectively transported aspartate, asparagine and glutamate. OsLHT1 is localized throughout the rice root, including root hairs, epidermis, cortex and stele, and to the leaf vasculature. Knockout of OsLHT1 in japonica resulted in reduced root uptake of amino acids. Furthermore, in 15N‐amino acid‐fed mutants versus wild‐type, a higher percentage of 15N remained in roots instead of being allocated to the shoot. 15N‐ammonium uptake and subsequently the delivery of root‐synthesized amino acids to Oslht1 shoots were also significantly decreased, which was accompanied by reduced shoot growth. These results together provide evidence that OsLHT1 functions in both root uptake and root to shoot allocation of a broad spectrum of amino acids in rice.  相似文献   

16.
17.
18.
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two‐hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss‐of‐function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro‐nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi‐OsRAD51D RNAi‐knock‐down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi‐OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.  相似文献   

19.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   

20.
Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP‐binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP‐RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C28 and C30 fatty acids or ω‐OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号