首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organically managed agroecosystems rely in part on biological control to prevent pest outbreaks. Generalist predators (Araneae, Carabidae and Staphylinidae) are a major component of the natural enemy community in agroecosystems. We assessed the seasonal dynamics of major generalist predator groups in conventionally and organically managed grass–clover fields that primarily differed by fertilisation strategy. We further established an experiment, manipulating the abundant wolf spider genus Pardosa, to identify the importance of these predators for herbivore suppression in the same system and growth period. Organic management significantly enhanced ground‐active spider numbers early and late in the growing season, with potentially positive effects of plant cover and non‐pest decomposer prey. However, enhancing spider numbers in the field experiment did not improve biological control in organically managed grass–clover fields. Similar to the survey results, reduced densities of Pardosa had no short‐term effect on any prey taxa; however, spider guild structure changed in response to Pardosa manipulation. In the presence of fewer Pardosa, other ground‐running spiders were more abundant; therefore, their impact on herbivore numbers may have been elevated, possibly cancelling increases in herbivore numbers because of reduced predation by Pardosa. Our results indicate positive effects of organic farming on spider activity density; however, our survey data and the predator manipulation experiment failed to find evidence that ground‐running spiders reduced herbivore numbers. We therefore suggest that a positive impact of organic fertilisers on wolf spiders in grass–clover agroecosystems may not necessarily improve biological control when compared with conventional farming.  相似文献   

2.
Even as new substances show promise as biopesticides for controlling pests due to their natural properties and high effectiveness in inhibiting pests, their side effects on non‐target organisms must nevertheless be evaluated before they can be included into integrated pest management systems. In this study, a crude extract from dried leaves of Embelia ribes was evaluated together with two commercial pesticides: azadirachtin (a natural product) and amitraz (a synthetic acaricide). We examined both lethal and sublethal effects on the predatory potential of the lynx spider Oxyopes lineatipes, which is among the most dominant predator in tropical agricultural agroecosystems. We found that the spider's mortality increased with rising concentration of both commercial products, azadirachtin and amitraz, but not with rising concentration of the extracts from E. ribes. The greatest mortality occurred when amitraz was used. That material caused almost 100% spider mortality in the doses recommended for field spraying. Azadirachtin significantly reduced the rate at which O. lineatipes captured prey, while there was no significant difference in capture rates among spiders exposed to a control treatment and the E. ribes treatment. Considering its absence of unfavourable impacts on O. lineatipes in terms of mortality and predatory activity, the plant extract from E. ribes shows promise as a new biopesticide material. In contrast, azadirachtin, which has been considered as safe for non‐target organisms, exhibited slight lethal effect only in higher concentrations and strong sublethal effect by reducing spiders’ predation rate.  相似文献   

3.
Temperature dependency of consumer–resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature‐driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26°C) and high (2,100 masl; 15°C) elevations in the Ecuadorian Andes, using wild populations of two common orb‐weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid‐rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low‐ or high‐elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species‐specific differences in their hunting behavior and sensitivity to temperature.  相似文献   

4.
Predator effects on herbivores are often referred to as examples of biotic interactions that weaken with latitude, but more studies are needed to test for the generality of this pattern. To further the understanding of large‐scale geographical patterns in abundance and diversity of predatory arthropods, from 2008–2011 we explored spider communities in the canopies of primary forest trees of the boreal zone (Pinus sylvestris, Picea abies, Betula pubescens and B. pendula) along five latitudinal gradients in northern Europe, from 59 to 70°N and from 10 to 60°E. The abundance of arboreal spiders in Norway and Finland was about a half of that in Russia, presumably due to more intensive forest management in Scandinavia. The abundance, taxonomic and functional diversity of arboreal spiders generally decreased with latitude; however, actual weather conditions during the study years had little effect on this pattern. Coniferous species supported higher abundance and diversity of arboreal spiders than birches, but the poleward decrease in either abundance or taxonomic diversity of arboreal spiders did not differ between coniferous and deciduous tree species. In contrast, functional diversity on birches decreased with latitude greater than on coniferous trees. Euryphagous spiders showed stronger decrease with latitude in terms of both abundance and taxonomic diversity than more specialized (steno‐ and oligophagous) spiders. We attribute the general decrease in density and diversity of spiders with latitude to an increased pressure from apex predators (birds) rather than to direct effects of climate or changes in prey abundance. The abundance of spiders declined with the latitude to the greater extent than the densities of their potential prey did, suggesting a decrease in the strength of predator–prey interactions towards the north.  相似文献   

5.
Sanders D  Platner C 《Oecologia》2007,150(4):611-624
In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis (15N and 13C). Adult wandering spiders were more enriched in 15N relative to 14N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed δ15N ratios just one trophic level above those of Collembola, and they had similar δ13C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces.  相似文献   

6.
Predators of dangerous prey risk being injured or killed in counter-attacks and hence may use risk-reducing predatory tactics. Spiders are often dangerous predators to insects, but for a few, including Stenolemus bituberus assassin bugs, web-building spiders are prey. Despite the dangers of counter-attack when hunting spiders, there has been surprisingly little investigation of the predatory tactics used by araneophagic (spider-eating) insects. Here, we compare the pursuit tendency, outcome and predatory tactics of S. bituberus against five species of web-building spider. We found that S. bituberus were most likely to hunt and capture spiders from the genus Achaearanea, a particularly common prey in nature. Capture of Achaearanea sp. was more likely if the prey spider was relatively small, or if S. bituberus was in poor condition. S. bituberus used two distinct predatory tactics, ‘stalking’, in which they slowly approached the prey, and ‘luring’, in which they attracted spiders by manipulating the web to generate vibrations. Tactics were tailored to the prey species, with luring used more often against spiders from the genus Achaearanea, and stalking used more often against Pholcus phalangioides. The choice of hunting tactic used by S. bituberus may reduce the risk posed by the prey spider.  相似文献   

7.
8.
9.
A comparison was made of the effect of glyphosate (Roundup®Plus), a post‐emergency applied herbicide, and of Harness®GTZ, a pre‐emergency applied herbicide, on the rhizobacterial communities of genetically modified NK603 glyphosate‐tolerant maize. The potential effect was monitored by direct amplification, cloning and sequencing of soil DNA encoding 16S rRNA, rhizobacterial DNA hybridization to commercially available genome‐wide microarrays from the soil bacterium Streptomyces coelicolor, and high‐throughput DNA pyrosequencing of the bacterial DNA coding for 16S rRNA hypervariable V6 region. The results obtained strongly suggest that both herbicides do in fact affect the maize rhizobacterial communities, glyphosate being, to a great extent, the environmentally less aggressive herbicide.  相似文献   

10.
To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest‐control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta‐analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non‐crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non‐crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non‐woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance‐richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non‐crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the ‘specialist‐generalist’ or ‘cultural difference’ mechanism. If complexity has stronger effects on richness than abundance, it might have stronger effects on the stability than the magnitude of these arthropod‐mediated ecosystem services. We conclude that some pollinators and natural enemies seem to have compatible responses to complexity, and it might be possible to manage agroecosystems for the benefit of both. However, too few studies have compared the two, and so we cannot yet conclude that there are no negative interactions between pollinators and natural enemies, and no trade‐offs between pollination and pest‐control services. Therefore, we suggest a framework for future research to bridge these gaps in our knowledge.  相似文献   

11.
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.  相似文献   

12.
Both herbivores that consume transgenic crops and their predators can be exposed to insecticidal proteins expressed in those crops. We conducted a tritrophic bioassay to evaluate the ecotoxicological impacts that Bt cabbage (Brassica oleracea var. capitata) expressing Cry1Ac1 protein might have on the wolf spider (Pardosa astrigera), a non-target generalist predator. Enzyme-Linked Immunosorbent Assays indicated that protein levels were 4.61 ng g-1 dry weight in fruit flies (Drosophila melanogaster) fed with the transgenic cabbage and 1.86 ng g-1 dry weight in the wolf spiders that preyed upon them. We also compared the life history traits of spiders collected from Bt versus non-Bt cabbage and found no significant differences in their growth, survival, and developmental rates. Because Bt cabbage did not affect the growth of fruit flies, we conclude that any indirect effects that this crop had on the wolf spider were probably not mediated by prey quality. Therefore, exposure to Cry1Ac1 protein when feeding upon prey containing that substance from transgenic cabbage has only a negligible influence on those non-target predatory spiders.  相似文献   

13.
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non-pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well-defended arthropods, and their potential use as natural enemies of several pests in South American crops.  相似文献   

14.
Spiders are common generalist predators in agroecosystems and have been suggested to lower herbivore abundance in crops. It is not clear, however, if spiders can effectively suppress pest populations, and if so, by what mechanisms. In a microcosm experiment, we examined the consumption of the bird cherry-oat aphid, Rhopalosiphum padi L. (Homoptera: Aphididae), a pest species in wheat fields, by three spider species that differ in their hunting methods. We then tested the effect of additional prey type on the ability of erigonid spiders to reduce aphids. In a 48-h experiment Mermessus denticulatus (Banks) (Araneae: Linyphiidae; Erigoninae) consumed more aphids than did Enoplognatha gemina Bosmans and Van Keer (Araneae: Theridiidae) and Bathyphantes cf. extricatus (O·P.-Cambridge) (Araneae: Linyphiidae; Linyphiinae). This difference may be due to the ability of erigonids to forage actively on the vegetation in addition to using their webs to catch prey. In a 7-week experiment, we provided springtails (Collembola) in high and low densities as additional prey to mated erigonids, prior to aphid introduction. Spiders in the low-density springtail treatment built more webs on the vegetation, and caused a 50% reduction in aphid populations. There were significantly fewer aphids in the low-density springtail treatment, but not in the high-density treatment, in comparison to the control (high-density springtails without spiders). The results suggest that additional prey density affects predatory interactions between M. denticulatus and R. padi and that erigonids, which occur in high densities in wheat fields in the Negev desert, may be involved in aphid suppression in these agroecosystems.
Efrat Gavish-RegevEmail:
  相似文献   

15.
Assassin bugs from the genus Stenolemus (Heteroptera, Reduviidae) are predators of web-building spiders. However, despite their fascinating lifestyle, little is known about how these insects hunt and catch their dangerous prey. Here we characterise in detail the behaviour adopted by Stenolemus bituberus (Stål) during encounters with web-building spiders, this being an important step toward understanding this species’ predatory strategy. These bugs employed two distinct predatory tactics, “stalking” and “luring”. When stalking their prey, bugs slowly approached the prey spider until within striking range, severing and stretching threads of silk that were in the way. When luring their prey, bugs attracted the resident spider by plucking and stretching the silk with their legs, generating vibrations in the web. Spiders approached the luring bug and were attacked when within range. The luring tactic of S. bituberus appears to exploit the tendency of spiders to approach the source of vibrations in the web, such as might be generated by struggling prey.  相似文献   

16.
Aged pesticide residues are detrimental to agrobiont spiders (Araneae)   总被引:1,自引:0,他引:1  
Spiders are among the most abundant arthropods in agroecosystems, playing an important role as natural enemies of various pests. In this study we evaluated residual activity of selected pesticides on the mortality and behaviour of four spider species (Dictyna uncinata, Pardosa palustris, Philodromus cespitum and Theridion impressum). We used three pesticides: a herbicide Command (clomazone), and insecticides Decis (deltamethrin) and Nurelle (chlorpyrifos and cypermethrin). Mortality was recorded after exposure of spiders to fresh (2-h), 5, 10, 15 and 20-day-old residues. For each residue mortality was evaluated after 24–72 h. Residual effect differed between preparations and, in some cases, between spiders. All of the Nurelle residues (fresh to 20-day-old) caused 100% mortality in all spider species. Residues of Command were rather harmless (causing <20% mortality) to all spider species as the herbicide activity declined with age. Residues of Decis had species-specific effects as the mortality varied between 0 and 90%. In Dictyna the mortality gradually declined with the age of residues, while in Pardosa the mortality increased. In Philodromus and Theridion the mortality declined up to 10-day-old residues and then increased so that 20-day-old residues caused almost as high mortality as the new ones. Exposure to pesticide residues immediately affected the movement of Pardosa spiders. Residues of Decis and Nurelle decreased spider locomotion, while those of Command increased locomotion in comparison with the control. In another experiment, we studied repellence of fresh pesticide residues to Pardosa spiders. In comparison with the control, spiders stayed a similar time on the surface treated with Command, but four times less on Decis and nine times less on Nurelle-treated surfaces, respectively. In conclusion, aged insecticide residues possess a high activity and can cause long-term decline in the abundance and prolonged behavioural disturbance of spiders in agroecosystems.  相似文献   

17.
Scorpions are dominant predators in some environments. Nevertheless, most studies of predatory behavior in scorpions have focused on diet composition whereas some other relevant aspects, such as predatory strategy, have been poorly explored. Herein we evaluate the prey acceptance and predatory strategy of the scorpion Bothriurus bonariensis against sympatric prey with different defenses. As prey, we selected earwigs (Forficula cf. auricularia) which use pincer-like defensive appendages, hard-bodied isopods (Armadillium vulgare) known for their conglobation defensive strategy, soft bodied isopods (Porcellio cf. scaber), which secrete noxious substances as defense mechanisms, cockroaches with limited defensive mechanisms (Blatta cf. orientalis.) and spiders (Lycosa cf. poliostoma) which possess venomous fangs. Prey were offered to 21 adults of B. bonariensis in random order until all prey had been offered to all scorpions. Prey consumption and the number of attempts needed for capture were recorded. We also evaluated the effect of sting use on immobilization time as well as the prey capture strategies on the most consumed prey. We found that despite using a similar number of attempts for capturing all prey, spiders and armadillid isopods were less consumed than other prey. Immobilization times were longer for earwigs than for armadillid isopods and cockroaches. Scorpions used alternative predatory strategies against these aforementioned prey, although the stinger was used against all of them. These results show that scorpions are able to use different predatory strategies which might allow them to include prey with diverse defensive strategies in their diet.  相似文献   

18.
Predators can affect prey dispersal lethally by direct consumption or non-lethally by making prey hesitate to disperse. These lethal and non-lethal effects are detectable only in systems where prey can disperse between multiple patches. However, most studies have drawn their conclusions concerning the ability of predatory mites to suppress spider mites based on observations of their interactions on a single patch or on heavily infested host plants where spider mites could hardly disperse toward intact patches. In these systems, specialist predatory mites that penetrate protective webs produced by spider mites quickly suppress the spider mites, whereas generalist predators that cannot penetrate the webs were ineffective. By using a connected patch system, we revealed that a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), effectively prevented dispersal of spider mites, Tetranychus kanzawai Kishida (Acari: Tetranychidae), by directly consuming dispersing individuals. We also revealed that a generalist predatory mite, Euseius sojaensis Ehara (Acari: Phytoseiidae), prevented between-patch dispersal of T. kanzawai by making them hesitate to disperse. In contrast, a specialist phytoseiid predatory mite, Neoseiulus womersleyi Schicha, allowed spider mites to escape an initial patch, increasing the number of colonized patches within the system. Our results suggest that ants and generalist predatory mites can effectively suppress Tetranychus species under some conditions, and should receive more attention as agents for conservation biological control in agroecosystems.  相似文献   

19.
Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.  相似文献   

20.
Prey subsidies originating from detritus add nutrients and energy to arboreal communities. Measurement of this subsidy is required in the understanding of how food web dynamics respond to changes in surrounding environments. Shrub spiders are one of the key predators involved in food web coupling. We evaluate the effects of potential changes in prey availabilities during secondary succession on the contribution of subsidy from detrital food webs to shrub spiders and how different spider feeding guilds used the subsidy of prey from detrital food webs. We measured the relative importance of the subsidy for the spider feeding guilds, using the ratios of stable isotopes of C (δ13C), and N (δ15N) and C isotope discrimination (Δ14C). Diet age was calculated from Δ14C values, because old diet ages of spiders indicate that the spiders consume prey from detrital food sources. Dominant aerial prey (Diptera) had a distinctively old diet age compared with arboreal prey, which indicates that aerial prey were subsidized from detrital food webs. Sit-and-wait spiders tended to have an older diet age than active hunting spiders, which indicates that sit-and-wait spiders depended more on subsidies. Diet age varied only slightly for spiders in stands of different ages, indicating that rates at which spiders use grazing and detrital prey are probably determined more by foraging strategies and not by stand age. A dominance of sit-and-wait predators will lead to higher detrital subsidy inputs in shrub habitats. This study highlights the effect of shrub spider community structure (feeding guild composition) on the volume of the subsidy received from the detrital food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号