首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Inducible gene expression based upon Tet repressor (tet regulation) is a broadly applied tool in molecular genetics. In its original environment, Tet repressor (TetR) negatively controls tetracycline (tc) resistance in bacteria. In the presence of tc, TetR is induced and detaches from its cognate DNA sequence tetO, so that a tc antiporter protein is expressed. In this article, we provide a comprehensive overview about tet regulation in bacteria and illustrate the parameters of different regulatory architectures. While some of these set‐ups rely on natural tet‐control regions like those found on transposon Tn10, highly efficient variations of this system have recently been adapted to different Gram‐negative and Gram‐positive bacteria. Novel tet‐controllable artificial or hybrid promoters were employed for target gene expression. They are controlled by regulators expressed at different levels either in a constitutive or in an autoregulated manner. The resulting tet systems have been used for various purposes. We discuss integrative elements vested with tc‐sensitive promoters, as well as tet regulation in Gram‐negative and Gram‐positive bacteria for analytical purposes and for protein overproduction. Also the use of TetR as an in vivo biosensor for tetracyclines or as a regulatory device in synthetic biology constructs is outlined. Technical specifications underlying different regulatory set‐ups are highlighted, and finally recent developments concerning variations of TetR are presented, which may expand the use of prokaryotic tet systems in the future.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号