共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis 总被引:25,自引:0,他引:25
During apoptosis, the permeabilization of the mitochondrial outer membrane allows the release of cytochrome c, which induces caspase activation to orchestrate the death of the cell. Mitochondria rapidly lose their transmembrane potential (Delta Psi m) and generate reactive oxygen species (ROS), both of which are likely to contribute to the dismantling of the cell. Here we show that both the rapid loss of Delta Psi m and the generation of ROS are due to the effects of activated caspases on mitochondrial electron transport complexes I and II. Caspase-3 disrupts oxygen consumption induced by complex I and II substrates but not that induced by electron transfer to complex IV. Similarly, Delta Psi m generated in the presence of complex I or II substrates is disrupted by caspase-3, and ROS are produced. Complex III activity measured by cytochrome c reduction remains intact after caspase-3 treatment. In apoptotic cells, electron transport and oxygen consumption that depends on complex I or II was disrupted in a caspase-dependent manner. Our results indicate that after cytochrome c release the activation of caspases feeds back on the permeabilized mitochondria to damage mitochondrial function (loss of Delta Psi m) and generate ROS through effects of caspases on complex I and II in the electron transport chain. 相似文献
2.
Dongmei Zou Jing Li Qianqian Fan Xuemei Zheng Jian Deng Shaohua Wang 《Journal of cellular biochemistry》2019,120(4):4837-4850
Hyperoxia-induced lung injury limits the application of mechanical ventilation on rescuing the lives of premature infants and seriously ill and respiratory failure patients, and its mechanisms are not completely understood. In this article, we focused on the relationship between hyperoxia-induced lung injury and reactive oxygen species (ROS), reactive nitrogen species (RNS), mitochondria damage, as well as apoptosis in the pulmonary epithelial II cell line RLE-6TN. After exposure to hyperoxia, the cell viability was significantly decreased, accompanied by the increase in ROS, nitric oxide (NO), inflammatory cytokines, and cell death. Furthermore, hyperoxia triggered the loss of mitochondrial membrane potential (▵Ψm), thereby promoting cytochrome c to release from mitochondria to cytoplasm. Further studies conclusively showed that the Bax/Bcl-2 ratio was enlarged to activate the mitochondria-dependent apoptotic pathway after hyperoxia treatment. Intriguingly, the effects of hyperoxia on the level of ROS, NO and inflammation, mitochondrial damage, as well as cell death were reversed by free radical scavengers N-acetylcysteine and hemoglobin. In addition, a hyperoxia model of neonatal Sprague-Dawley (SD) rats presented the obvious characteristics of lung injury, such as a decrease in alveolar numbers, alveolar mass edema, and disorganized pulmonary structure. The effects of hyperoxia on ROS, RNS, inflammatory cytokines, and apoptosis-related proteins in lung injury tissues of neonatal SD rats were similar to that in RLE-6TN cells. In conclusion, mitochondria are a primary target of hyperoxia-induced free radical, whereas ROS and RNS are the key mediators of hyperoxia-induced cell apoptosis via the mitochondria-dependent pathway in RLE-6TN cells. 相似文献
3.
R.M. Thushara M. Hemshekhar K. Sunitha M.S. Kumar S. Naveen K. Kemparaju K.S. Girish 《Biochimie》2013
Platelets play an indispensable role in human health and disease. Platelets are very sensitive to oxidative stress, as it leads to the damage of mitochondrial DNA, which is the initial step of a sequence of events culminating in the cell death through the intrinsic pathway of apoptosis. Owing to a lot of reports on secondary complications arising from oxidative stress caused by therapeutic drug overdose, the present study concentrated on the influence of sesamol on oxidative stress-induced platelet apoptosis. Sesamol, a phenolic derivative present in sesame seeds is an exceptionally promising drug with lots of reports on its protective functions, including its inhibitory effects on platelet aggregation at concentrations below 100 μM, and its anti-cancer effect at 1 mM. However, the present study explored the toxic effects of sesamol on human platelets. Sesamol at the concentration of 0.25 mM and above induced platelet apoptosis through endogenous generation of ROS, depletion of thiol pool, and Ca2+ mobilization. It also induced mitochondrial membrane potential depolarization, caspase activation, cytochrome c translocation and phosphatidylserine exposure, thus illustrating the pro-apoptotic effect of sesamol at higher concentration. However, even at high concentration of 2 mM sesamol effectively inhibited collagen/ADP/epinephrine-induced platelet aggregation. The study demonstrates that even though sesamol inhibits platelet aggregation, it has the tendency to elicit platelet apoptosis at higher concentrations. Sesamol has a potential as thrombolytic agent, nevertheless the current work highlights the significance of an appropriate dosage of sesamol when it is used as a therapeutic drug. 相似文献
4.
AGEs induces apoptosis and autophagy via reactive oxygen species in human periodontal ligament cells
You-Min Mei Lu Li Xiao-Qian Wang Min Zhang Li-Fang Zhu Yong-Wei Fu Yan Xu 《Journal of cellular biochemistry》2020,121(8-9):3764-3779
The apoptosis of human periodontal ligament cells (HPDLCs) may be an important factor of the negative effect of advanced glycation end products (AGEs) on the periodontal tissue of diabetic patients. However, the pathways or potential effects of apoptosis in AGEs-treated HPDLCs have not been fully elucidated. Autophagy is closely related to apoptosis. Herein, we investigated the potential mechanism of apoptosis and autophagy in HPDLCs treated with AGEs via an in vitro model. We found that AGEs-treated HPDLCs showed a time- and concentration-dependent reduction in the cell survival rate. The mitochondrial-dependent apoptosis was induced in AGEs-treated HPDLCs, as confirmed by the mitochondrial membrane potential depolarization, decreased Bcl-2 expression, increased Bax expression, and increased caspase-3 and PARP cleavage. Autophagy was also induced in AGEs-treated HPDLCs, as indicated by the conversion of LC3-II/LC3-I and the presence of autophagosomes. Interestingly, our study results suggested that apoptosis and autophagy were related to reactive oxygen species (ROS) production. In addition, AGEs-induced autophagy acted as a latent factor in decreasing the generation of ROS in HPDLCs and protecting against the AGEs-induced apoptosis. In summary, our study shows that ROS are essential in AGEs-induced HPDLCs apoptosis and autophagy, which may be a molecular mechanism for the repairment of ROS-induced damage in HPDLCs treated with AGEs to promote cell survival. The present study might provide new insights into the therapeutic targeting of HPDLCs autophagy, which could be an additional strategy for periodontitis in patients with diabetes mellitus. 相似文献
5.
Xueli Gao Oswald D’Auvergne 《Biochemical and biophysical research communications》2009,389(2):382-6781
Cholesterol secoaldehyde (3β-hydroxy-5-oxo-5,6-secocholestan-6-al or ChSeco) is an oxysterol known to be formed in reactions of ozone with cholesterol and also when cholesterol-5α-hydroperoxide undergoes Hock cleavage. In view of its widespread occurrence and atherogenic potential, we examined the effects of ChSeco on mouse J774 macrophage viability and events associated with apoptosis. A dose-dependent decrease in cell viability, disruptions in mitochondrial transmembrane potential (64 ± 5.5%; mean ± SD, n = 3), increased levels of cytosolic cytochrome c (8.8 ± 0.84 ng/ml; mean ± SD, n = 3), activation of caspase-3 (ca. 3.6-fold) and caspase-9 (ca.1.8-fold), and increased DNA fragmentation (ca. 5-fold), all indicative of apoptosis, were observed in response to exposure to ChSeco. The apoptotic nature of cell death in macrophages was confirmed by dual staining with acridine orange and ethidium bromide. However, unlike the case with cardiomyoblasts and neuronal cells, the apoptotic process in these immune cells was not mediated by increased levels of reactive oxygen species as indicated by a minimal or no increase in 2′,7′-dichlorofluorescein fluorescence. It is suggested that the apoptotic process is mediated via the mitochondrial pathway and that ChSeco formed in biological environments contributes to the initiation, progression, and culmination of atherosclerotic plaque formation, as these processes are critically dependent on macrophage apoptosis. 相似文献
6.
《Autophagy》2013,9(12):2126-2139
We screened a chemical library in MCF-7 cells stably expressing green fluorescent protein (GFP)-conjugated microtubule-associated protein 1 light chain 3 (LC3) (GFP-LC3-MCF-7) using cell-based assay, and identified BIX-01294 (BIX), a selective inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2), as a strong autophagy inducer. BIX enhanced formation of GFP-LC3 puncta, LC3-II, and free GFP, signifying autophagic activation. Inhibition of these phenomena with chloroquine and increasement in punctate dKeima ratio (550/438) signal indicated that BIX activated autophagic flux. BIX-induced cell death was suppressed by the autophagy inhibitor, 3-methyladenine, or siRNA against BECN1 (VPS30/ATG6), ATG5, and ATG7, but not by caspase inhibitors. Moreover, EHMT2 siRNA augmented GFP-LC3 puncta, LC3-II, free GFP, and cell death, implying that inhibition of EHMT2 caused autophagy-mediated cell death. Treatment with EHMT2 siRNA and BIX accumulated intracellular reactive oxygen species (ROS). BIX augmented mitochondrial superoxide via NADPH oxidase activation. In addition, BIX increased hydrogen peroxide and glutathione redox potential in both cytosol and mitochondria. Treatment with N-acetyl-L-cysteine (NAC) or diphenyleneiodonium chloride (DPI) decreased BIX-induced LC3-II, GFP-LC3 puncta, and cell death, indicating that ROS instigated autophagy-dependent cell death triggered by BIX. We observed that BIX potentiated autophagy-dependent and caspase-independent cell death in estrogen receptor (ESR)-negative SKBr3 and ESR-positive MCF-7 breast cancer cells, HCT116 colon cancer cells, and importantly, in primary human breast and colon cancer cells. Together, the results suggest that BIX induces autophagy-dependent cell death via EHMT2 dysfunction and intracellular ROS accumulation in breast and colon cancer cells, therefore EHMT2 inhibition can be an effective therapeutic strategy for cancer treatment. 相似文献
7.
《Free radical research》2013,47(8):1029-1043
AbstractHLE, a human hepatocellular carcinoma cell line was transiently transfected with normal human MnSOD and MnSOD without a mitochondrial targeting signal (MTS). Mitochondrial reactive oxygen species (ROS), lipid peroxidation and apoptosis were examined as a function of time following 18.8 Gy X-ray irradiation. Our results showed that the level of mitochondrial ROS increased and reached a maximum level 2 hours after X-ray irradiation. Authentic MnSOD, but not MnSOD lacking MTS, protected against mitochondrial ROS, lipid peroxidation and apoptosis. In addition, the levels of mitochondrial ROS were consistently found to always correlate with the levels of authentic MnSOD in mitochondria. These results suggest that only when MnSOD is located in mitochondria is it efficient in protecting against cellular injuries by X-ray irradiation and that mitochondria are the critical sites of X-ray-induced cellular oxidative injuries. 相似文献
8.
Chiang-Wen Lee Miao-Ching Chi Tsung-Ming Chang Ju-Fang Liu 《Journal of cellular physiology》2019,234(8):13157-13168
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines—U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma. 相似文献
9.
10.
11.
p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. 总被引:24,自引:0,他引:24 下载免费PDF全文
Downstream mediators of p53 in apoptosis induction remain to be elucidated. We report that p53-induced apoptosis occurred in the absence of cytochrome c release into the cytosol. Although Bax was upregulated, it remained largely in the cytosol and there was no detectable translocation to the mitochondria. Bid was not activated as no cleavage could be detected. Thus, the absence of cytochrome c release may be due to the lack of Bax translocation to mitochondria and/or Bid inactivation. Nevertheless, p53-induced apoptosis is still caspase dependent because it could be abolished by z-VAD-fmk. To search for alternative downstream targets of p53, we detected production of reactive oxygen species (ROS) as well as mitochondrial membrane potential (Deltapsi). p53 induced ROS generation, which then caused a transient increase of Deltapsi followed by a decrease. Antioxidants could inhibit the alterations of Deltapsi, thereby preventing apoptosis. z-VAD-fmk was unable to abrogate Deltapsi elevation but inhibited Deltapsi decrease, indicating that Deltapsi elevation and its decrease are two independent events. Bcl-2 may abolish elevation as well as decrease of Deltapsi without interfering with ROS levels. Thus, the ROS-mediated disruption of Deltapsi constitutes a pivotal step in the apoptotic pathway of p53, and this pathway does not involve cytochrome c release. 相似文献
12.
Du W Hong J Wang YC Zhang YJ Wang P Su WY Lin YW Lu R Zou WP Xiong H Fang JY 《Journal of cellular and molecular medicine》2012,16(8):1878-1888
Abnormalities in the JAK2/STAT3 pathway are involved in the pathogenesis of colorectal cancer (CRC), including apoptosis. However, the exact mechanism by which dysregulated JAK2/STAT3 signalling contributes to the apoptosis has not been clarified. To investigate the role of both JAK2 and STAT3 in the mechanism underlying CRC apoptosis, we inhibited JAK2 with AG490 and depleted STAT3 with a small interfering RNA. Our data showed that inhibition of JAK2/STAT3 signalling induced CRC cellular apoptosis via modulating the Bcl-2 gene family, promoting the loss of mitochondrial transmembrane potential (Δψm) and the increase of reactive oxygen species. In addition, our results demonstrated that the translocation of cytochrome c (Cyt c), caspase activation and cleavage of poly (ADP-ribose) polymerase (PARP) were present in apoptotic CRC cells after down-regulation of JAK2/STAT3 signalling. Moreover, inhibition of JAK2/STAT3 signalling suppressed CRC xenograft tumour growth. We found that JAK2/STAT3 target genes were decreased; meanwhile caspase cascade was activated in xenograft tumours. Our findings illustrated the biological significance of JAK2/STAT3 signalling in CRC apoptosis, and provided novel evidence that inhibition of JAK2/STAT3 induced apoptosis via the mitochondrial apoptotic pathway. Therefore, JAK2/STAT3 signalling may be a potential target for therapy of CRC. 相似文献
13.
Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis 总被引:8,自引:0,他引:8
Interferon-gamma (IFN-gamma) induces cell-cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, the detailed mechanism, including regulating molecules, is still unclear. In this study, we found that IFN-gamma induced generation of reactive oxygen species (ROS) in primary hepatocytes and that pyrrolidinedithiocarbamate (PDTC), an anti-oxidant reagent, completely suppressed IFN-gamma-induced hepatic apoptosis. PDTC blocked apoptosis downstream from IRF-1 and upstream from caspase activation, suggesting that the generation of ROS occurred between these stages. However, IFN-gamma also induced the generation of ROS in IRF-1-deficient hepatocytes, cells insensitive to IFN-gamma-induced apoptosis. Moreover, a general cyclooxygenase (COX) inhibitor, indomethacin (but not the cyclooxygenase 2-specific inhibitor, NS-398) also inhibited the apoptosis without blocking the generation of ROS. Both PDTC and indomethacin also blocked IFN-gamma-induced release of cytochrome c from mitochondria. These results suggest that ROS are not the only or sufficient mediators of IFN-gamma-induced hepatic apoptosis. In contrast, we also found that IFN-gamma induced endoplasmic reticulum (ER) stress proteins, CHOP/GADD153 and caspase 12, in wild-type primary hepatocytes, but induced only caspase 12 and not CHOP/GADD153 protein in IRF-1-deficient hepatocytes. These results suggest that IFN-gamma induces ER stress in primary hepatocytes. Both the ROS and ER stress induced by IFN-gamma may be complementary mediators that induce apoptosis in primary hepatocytes. 相似文献
14.
The cytotoxicity and its underlying mechanisms induced by gliotoxin (GT), an immunosuppressive agent, in macrophages are poorly understood. We report here that GT induced a rapid apoptosis (DNA fragmentation and hypodiploid nuclei obtained within 4 hrs of treatment) in murine macrophages PU5-1.8 in a dose-dependent and cell cycle-independent manner. The GT-induced apoptosis was suppressed by z-Asp, z-VAD-fmk and antioxidants suggesting that production of reactive oxygen species (ROS) and activation of caspases were important in this process. Also, release of cytochrome c from mitochondria was found to be an early event (within 1 hr) after addition of GT (250 ng/ml) and its presence in the cytosol was sufficient to elicit apoptosis. Interestingly, the release of cytochrome c was not accompanied by a reduction in the mitochondrial membrane potential (ψm) as determined by several ψm-sensitive fluorescent indicators. Taken together, our results indicate that GT is a potent apoptotic agent in PU5-1.8 cells and the loss of ψm is not a universal early marker for apoptosis. 相似文献
15.
Geise Ribeiro Marcel Benadiba Denise de Oliveira Silva Alison Colquhoun 《Cell biochemistry and function》2010,28(1):15-23
The present study reports the synthesis of a novel compound with the formula [Ru2(aGLA)4Cl] according to elemental analyses data, referred to as Ru2GLA. The electronic spectra of Ru2GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru2GLA was synthesized with the aim of combining and possibly improving the anti‐tumour properties of the two active components ruthenium and γ‐linolenic acid (GLA). The properties of Ru2GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru2GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru2GLA enters the cells and ICP‐AES elemental analysis found an increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub‐G1 apoptotic cell population was increased by Ru2GLA (22 ± 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru2GLA (44 ± 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 ± 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru2GLA exposed cells. The EC50 for Ru2GLA decreased with increasing time of exposure from 285 µM at 24 h, 211 µM at 48 h to 81 µM at 72 h. In conclusion, Ru2GLA is a novel drug with antiproliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Kwang‐Youn Kim Hyo‐Jin Cho Sun‐Nyoung Yu Sang‐Hun Kim Hak‐Sun Yu Yeong‐Min Park Nooshin Mirkheshti So Young Kim Chung Seog Song Bandana Chatterjee Soon‐Cheol Ahn 《Journal of cellular biochemistry》2013,114(5):1124-1134
The limited treatment option for recurrent prostate cancer and the eventual resistance to conventional chemotherapy drugs has fueled continued interest in finding new anti‐neoplastic agents of natural product origin. We previously reported anti‐proliferative activity of deoxypodophyllotoxin (DPT) on human prostate cancer cells. Using the PC‐3 cell model of human prostate cancer, the present study reveals that DPT induced apoptosis via a caspase‐3‐dependent pathway that is activated due to dysregulated mitochondrial function. DPT‐treated cells showed accumulation of the reactive oxygen species (ROS), intracellular Ca surge, increased mitochondrial membrane potential (MMP, ΔΨm), Bax protein translocation to mitochondria and cytochrome c release to the cytoplasm. This resulted in caspase‐3 activation, which in turn induced apoptosis. The antioxidant N‐acetylcysteine (NAC) reduced ROS accumulation, MMP and Ca surge, on the other hand the Ca2+ chelator BAPTA inhibited the Ca overload and MMP without affecting the increase of ROS, indicating that the generation of ROS occurred prior to Ca2+ flux. This suggested that both ROS and Ca signaling play roles in the increased MMP via Ca‐dependent and/or ‐independent mechanisms, since ΔΨm elevation was reversed by NAC and BAPTA. This study provides the first evidence for the involvement of both ROS‐ and Ca‐activated signals in the disruption of mitochondrial homeostasis and the precedence of ROS production over the failure of Ca2+ flux homeostasis. J. Cell. Biochem. 114: 1124–1134, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
17.
Kim KY Yu SN Lee SY Chun SS Choi YL Park YM Song CS Chatterjee B Ahn SC 《Biochemical and biophysical research communications》2011,(1):80-86
The anticancer activity of salinomycin has evoked excitement due to its recent identification as a selective inhibitor of breast cancer stem cells (CSCs) and its ability to reduce tumor growth and metastasis in vivo. In prostate cancer, similar to other cancer types, CSCs and/or progenitor cancer cells are believed to drive tumor recurrence and tumor growth. Thus salinomycin can potentially interfere with the end-stage progression of hormone-indifferent and chemotherapy-resistant prostate cancer. Androgen-responsive (LNCaP) and androgen-refractive (PC-3, DU-145) human prostate cancer cells showed dose- and time-dependent reduced viability upon salinomycin treatment; non-malignant RWPE-1 prostate cells were relatively less sensitive to drug-induced lethality. Salinomycin triggered apoptosis of PC-3 cells by elevating the intracellular ROS level, which was accompanied by decreased mitochondrial membrane potential, translocation of Bax protein to mitochondria, cytochrome c release to the cytoplasm, activation of the caspase-3 and cleavage of PARP-1, a caspase-3 substrate. Expression of the survival protein Bcl-2 declined. Pretreatment of PC-3 cells with the antioxidant N-acetylcysteine prevented escalation of oxidative stress, dissipation of the membrane polarity of mitochondria and changes in downstream molecular events. These results are the first to link elevated oxidative stress and mitochondrial membrane depolarization to salinomycin-mediated apoptosis of prostate cancer cells. 相似文献
18.
Kyung Min Yang Jong Ok Pyo Gyu-Yeol Kim Rina Yu In Seob Han Seong A. Ju Won Ho Kim Byung-Sam Kim 《Cellular & molecular biology letters》2009,14(3):497-510
Although genetic factors are a well-known cause of colorectal cancer, environmental factors contribute more to its development. Despite advances in the fields of surgery, radiotherapy and chemotherapy, the cure rates for colon cancer have not substantially improved over the past few decades. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), the principal pungent ingredient of hot chili pepper, has exhibited an anti-tumor effect in many cell types. However, the mechanisms responsible for the anti-tumor effect of capsaicin are not yet completely understood. In this study, we investigated whether capsaicin induces apoptosis in colon cancer cell lines. Capsaicin decreased cell viability in a dose-dependent manner in Colo320DM and LoVo cells. In addition, capsaicin produced cell morphology changes and DNA fragmentation, decreased the DNA contents, and induced phosphatidylserine translocation, which is a hallmark of apoptotic cell death. We showed that capsaicin-induced apoptosis is associated with an increase in ROS generation and a disruption of the mitochondrial transmenbrane potential. A possible mechanism of capsaicin-induced apoptosis is the activation of caspase 3, a major apoptosis-executing enzyme. Treatment with capsaicin induced a dramatic increase in caspase 3 activity, as assessed by the cleavage of Ac-DEVD-AMC, a fluorogenic substrate. In conclusion, our results clearly showed that capsaicin induced apoptosis in colon cancer cells. Although the actual mechanisms of capsaicin-induced apoptosis remain uncertain, it may be a beneficial agent for colon cancer treatment and chemoprevention. 相似文献
19.
Ornithine decarboxylase prevents tumor necrosis factor alpha-induced apoptosis by decreasing intracellular reactive oxygen species 总被引:1,自引:0,他引:1
Liu GY Hung YC Hsu PC Liao YF Chang WH Tsay GJ Hung HC 《Apoptosis : an international journal on programmed cell death》2005,10(3):569-581
Ornithine decarboxylase (ODC) plays an essential role in various biological functions, including cell proliferation, differentiation and cell death. However, how it prevents the cell apoptotic mechanism is still unclear. Previous studies have demonstrated that decreasing the activity of ODC by difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, causes the accumulation of intracellular reactive oxygen species (ROS) and cell arrest, thus inducing cell death. These findings might indicate how ODC exerts anti-oxidative and anti-apoptotic effects. In our study, tumor necrosis factor alpha (TNF-) induced apoptosis in HL-60 and Jurkat T cells. The kinetic studies revealed that the TNF- -induced apoptotic process included intracellular ROS generation (as early as 1 h after treatment), the activation of caspase 8 (3 h), the cleavage of Bid (3 h) and the disruption of mitochondrial membrane potential ( m) (6 h). Furthermore, ROS scavengers, such as glutathione (GSH) and catalase, maintained m and prevented apoptosis upon treatment. Putrescine and overexpression of ODC had similar effects as ROS scavengers in decreasing intracellular ROS and preventing the disruption of m and apoptosis. Inhibition of ODC by DFMO in HL-60 cells only could increase ROS generation, but did not disrupt m or induce apoptosis. However, DFMO enhanced the accumulation of ROS, disruption of m and apoptosis when cells were treated with TNF- . ODC overexpression avoided the decline of Bcl-2, prevented cytochrome c release from mitochondria and inhibited the activation of caspase 8, 9 and 3. Overexpression of Bcl-2 maintained m and prevented apoptosis, but could not reduce ROS until four hours after TNF- treatment. According to these data, we suggest that TNF- induces apoptosis mainly by a ROS-dependent, mitochondria-mediated pathway. Furthermore, ODC prevents TNF- -induced apoptosis by decreasing intracellular ROS to avoid Bcl-2 decline, maintain m, prevent cytochrome c release and deactivate the caspase cascade pathway. 相似文献
20.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways. 相似文献