首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are few papers describing long-term fluctuations and general patterns of temporal diversity in butterfly assemblages in the Neotropical region. The present paper presents a long-term study on the variation in richness and composition of butterflies in a fragment of semi-deciduous forest in Southeastern Brazil, and examines the viability of using maximized butterfly transect counts as a methodology to rapidly and adequately access the local characteristics of butterfly communities. Based on the eight annual standard lists, 518 species in six butterfly families were recorded, representing 74 % of the total butterfly fauna known from the study site. Hesperiidae was the richest family (248 species), followed by Nymphalidae (154), Lycaenidae (49), Riodinidae (29), Pieridae (26), and Papilionidae (12). The accumulation curves show that 8 years of sampling were not enough to result in stable species totals for all butterfly families, especially Hesperiidae and Lycaenidae, which are still increasing in number of species. A great similarity in species composition was observed among all the years (54 %). Comparing the similarity between two standard lists at different time intervals (from 1 to 8 years), a clear pattern of increasing dissimilarity was observed in most families. Our results show that the maximized sampling method is effective in revealing temporal patterns of diversity across several years and could be valuable in monitoring temporal variation in butterfly assemblages for conservation purposes, since the obtained standard lists can be successfully compared to temporal patterns over large periods of time.  相似文献   

2.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

3.
Species richness and evenness, the two principle components of species diversity, are frequently used to describe variation in species assemblages in space and time. Compound indices, including variations of both the Shannon–Wiener index and Simpson’s index, are assumed to intelligibly integrate species richness and evenness into all-encompassing measures. However, the efficacy of compound indices is disputed by the possibility of inverse relationships between species richness and evenness. Past studies have assessed relationships between various diversity measures across survey locations for a variety of taxa, often finding species richness and evenness to be inversely related. Butterflies are one of the most intensively monitored taxa worldwide, but have been largely neglected in such studies. Long-term butterfly monitoring programs provide a unique opportunity for analyzing how trends in species diversity relate to habitat and environmental conditions. However, analyzing trends in butterfly diversity first requires an assessment of the applicability of common diversity measures to butterfly assemblages. To accomplish this, we quantified relationships between butterfly diversity measures estimated from 10 years of butterfly population data collected in the North Saskatchewan River Valley in Edmonton, Alberta, Canada. Species richness and evenness were inversely related within the butterfly assemblage. We conclude that species evenness may be used in conjunction with richness to deepen our understandings of assemblage organization, but combining these two components within compound indices does not produce measures that consistently align with our intuitive sense of species diversity.  相似文献   

4.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

5.
6.
Aim In recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local‐scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local‐scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional‐scale assemblages across continents. The present work aims to address this prediction. Location North and South America. Methods We combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1° and 5° map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. Results The results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusion The results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional‐scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained.  相似文献   

7.
We compared the diversity, taxonomic composition, and pollination syndromes of bromeliad assemblages and the diversity and abundance of hummingbirds along two climatically contrasting elevational gradients in Bolivia. Elevational patterns of bromeliad species richness differed noticeably between transects. Along the continuously wet Carrasco transect, species richness peaked at mid‐elevations, whereas at Masicurí most species were found in the hot, semiarid lowlands. Bromeliad assemblages were dominated by large epiphytic tank bromeliads at Carrasco and by small epiphytic, atmospheric tillandsias at Masicurí. In contrast to the epiphytic taxa, terrestrial bromeliads showed similar distributions across both transects. At Carrasco, hummingbird‐pollination was the most common pollination mode, whereas at Masicurí most species were entomophilous. The proportion of ornithophilous species increased with elevation on both transects, whereas entomophily showed the opposite pattern. At Carrasco, the percentage of ornithophilous bromeliad species was significantly correlated with hummingbird abundance but not with hummingbird species richness. Bat‐pollination was linked to humid, tropical conditions in accordance with the high species richness of bats in tropical lowlands. At Carrasco, mixed hummingbird/bat‐pollination was found especially at mid‐elevations, i.e., on the transition between preferential bat‐pollination in the lowlands and preferential hummingbird‐pollination in the highlands. In conclusion, both richness patterns and pollination syndromes of bromeliad assemblages varied in distinct and readily interpretable ways in relation to environmental humidity and temperature, and bromeliad pollination syndromes appear to follow the elevational gradients exhibited by their pollinators.  相似文献   

8.
An important challenge in ecology is to predict patterns of biodiversity across eco‐geographical gradients. This is particularly relevant in areas that are inaccessible, but are of high research and conservation value, such as mountains. Potentially, remotely‐sensed vegetation indices derived from satellite images can help in predicting species diversity in vast and remote areas via their relationship with two of the major factors that are known to affect biodiversity: productivity and spatial heterogeneity in productivity. Here, we examined whether the Normalized Difference Vegetation Index (NDVI) can be used effectively to predict changes in butterfly richness, range size rarity and beta diversity along an elevation gradient. We examined the relationship between butterfly diversity and both the mean NDVI within elevation belts (a surrogate of productivity) and the variability in NDVI within and among elevation belts (surrogates for spatial heterogeneity in productivity). We calculated NDVI at three spatial extents, using a high spatial resolution QuickBird satellite image. We obtained data on butterfly richness, rarity and beta diversity by field sampling 100 m quadrats and transects between 500 and 2200 m in Mt Hermon, Israel. We found that the variability in NDVI, as measured both within and among adjacent elevation belts, was strongly and significantly correlated with butterfly richness. Butterfly range size rarity was strongly correlated with the mean and the standard deviation of NDVI within belts. In our system it appears that it is spatial heterogeneity in productivity rather than productivity per se that explained butterfly richness. These results suggest that remotely‐sensed data can provide a useful tool for assessing spatial patterns of butterfly richness in inaccessible areas. The results further indicate the importance of considering spatial heterogeneity in productivity along elevation gradients, which has no lesser importance than productivity in shaping richness and rarity, especially at the local scale.  相似文献   

9.
We compared variation in butterfly communities across 3 years at six different habitats in a temperate ecosystem near Boulder, Colorado, USA. These habitats were classified by the local Open Space consortium as Grasslands, Tallgrass, Foothills Grasslands, Foothills Riparian, Plains Riparian, and Montane Woodland. Rainfall and temperature varied considerably during these years. We surveyed butterflies using the Pollard‐Yates method of invertebrate sampling and compared abundance, species richness, and diversity across habitats and years. Communities were most influenced by habitat, with all three quantitative measures varying significantly across habitats but only two measures showing variation across years. Among habitats, butterfly abundance was higher in Plains Riparian sites than in Montane Woodland or Grassland sites, though diversity was lowest in Plains Riparian areas. Butterfly species richness was higher in Foothills Riparian sites than it was in all but one other habitat (Tallgrass). Among years, butterfly abundance and species richness were lower during the year of least rainfall and highest temperatures, suggesting a substantial impact of the hot, dry conditions. Across habitats and years, butterfly abundance was consistently high at Plains Riparian and Foothills Riparian sites, and richness and diversity were consistently high in Foothills Riparian areas. These two habitats may be highly suitable for butterflies in this ecosystem, regardless of weather conditions. Generally low abundance and species richness in Montane Woodlands sites, particularly in 2002, suggested low suitability of the habitat to butterflies in this ecosystem, and this may be especially important during drought‐like conditions. Finally, to examine the effect that the presence of the very abundant non‐native species Pieris rapae L. (Lepidoptera: Pieridae) has on these communities, we re‐analyzed the data in the absence of this species. Excluding P. rapae dramatically reduced variation of both butterfly abundance and diversity across habitats, highlighting the importance of considering community membership in analyses like ours.  相似文献   

10.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

11.
1. Ants are highly interactive organisms and dominant species are considered to be able to control the species richness of other ants via competitive exclusion. However, depending on the scale studied, inter‐specific competition may or may not structure biological assemblages. To date, ant dominance–richness relationships have only been studied in small sample units, where a few dominant colonies could plausibly control most of the sample unit. 2. We conducted a comprehensive survey of terrestrial ant assemblages using bait, pitfall, and litter‐sorting methods in three sites in Brazilian Amazonia. Using a spatially structured rarefaction approach, based on sampling units with linear dimensions ranging from 25 to 250 m, the mesoscale patterns of ant dominance–richness relationships (sampling units covering hundreds of meters separated by kilometers) were investigated. 3. Interference–competition models (parabolic or negative linear relationships between species richness and the abundance of dominant ants) tended to be more frequent in smaller sample units or in assemblages sampled with interactive methods, such as baits. Using more inclusive sampling methods, the relationship was generally asymptotic rather than parabolic, with no reduction in species diversity because of the presence of dominants. Random co‐occurrence patterns of species within sites support the interpretation of a limited role for present‐day competition in structuring these assemblages. 4. Competition from dominant species may reduce species richness in small areas, especially when artificial baits are used, but appears to be less important than environmental constraints in determining ant species richness across scales of hectares and greater in these Amazon forests.  相似文献   

12.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

13.
Human-induced habitat conversion and degradation, along with accelerating climatic change, have resulted in considerable global biodiversity loss. Nevertheless, how local ecological assemblages respond to the interplay between climate and land-use change remains poorly understood. Here, we examined the effects of climate and land-use interactions on butterfly diversity in different ecosystems of southwestern China. Specifically, we investigated variation in the alpha and beta diversities of butterflies in different landscapes along human-modified and climate gradients. We found that increasing land-use intensity not only caused a dramatic decrease in butterfly alpha diversity but also significantly simplified butterfly species composition in tropical rainforest and savanna ecosystems. These findings suggest that habitat modification by agricultural activities increases the importance of deterministic processes and leads to biotic homogenization. The land-use intensity model best explained species richness variation in the tropical rainforest, whereas the climate and land-use intensity interaction model best explained species richness variation in the savanna. These results indicate that climate modulates the effects of land-use intensity on butterfly alpha diversity in the savanna ecosystem. We also found that the response of species composition to climate varied between sites: specifically, species composition was strongly correlated with climatic distance in the tropical rainforest but not in the savanna. Taken together, our long-term butterfly monitoring data reveal that interactions between human-modified habitat change and climate change have shaped butterfly diversity in tropical rainforest and savanna. These findings also have important implications for biodiversity conservation under the current era of rapid human-induced habitat loss and climate change.  相似文献   

14.
1. Documenting species abundance distributions in natural environments is critical to ecology and conservation biology. Tropical forest insect faunas vary in space and time, and these partitions can differ in their contribution to overall species diversity. 2. In the Neotropics, the Central American butterfly fauna is best known in terms of general natural history, but butterfly community diversity is best documented by studies on South American fruit-feeding butterflies. Here, we present the first long-term study of fruit-feeding nymphalid species diversity from Central America and provide a unique comparison between Central and South American butterfly communities. 3. This study used 60 months of sampling among multiple spatial and temporal partitions to assess species diversity in a Costa Rican rainforest butterfly community. Abundance distributions varied significantly at the species and higher taxonomic group levels, and canopy and understorey samples were found to be composed of distinct species assemblages. 4. Strong similarities in patterns of species diversity were found between this study and one from Ecuador; yet, there was an important difference in how species richness was distributed in vertical space. In contrast to the Ecuadorian site, Costa Rica had significantly higher canopy richness and lower understorey richness. 5. This study affirms that long-term sampling is vital to understanding tropical insect species abundance distributions and points to potential differences in vertical structure among Central and South American forest insect communities that need to be explored.  相似文献   

15.
Aim Broad‐scale spatial variation in species richness relates to climate and physical heterogeneity but human activities may be changing these patterns. We test whether climate and heterogeneity predict butterfly species richness regionally and across Canada and whether these relationships change in areas of human activity. Location Canada. Methods We modelled the ranges of 102 butterfly species using genetic algorithms for rule‐set production (GARP). We then measured butterfly species richness and potentially important aspects of human activity and the natural environment. These were included in a series of statistical models to determine which factors are likely to affect butterfly species richness in Canada. We considered patterns across Canada, within predominantly natural areas, human‐dominated areas and particular ecozones. We examined independent observations of butterfly species currently listed under Canada's endangered species legislation to test whether these were consistent with findings from statistical models. Results Growing season temperature is the main determinant of butterfly species richness across Canada, with substantial contributions from habitat heterogeneity (measured using elevation). Only in the driest areas does precipitation emerge as a leading predictor of richness. The slope of relationships between all of these variables and butterfly species richness becomes shallower in human‐dominated areas, but butterfly richness is still highest there. Insecticide applications, habitat loss and road networks reduce butterfly richness in human‐dominated areas, but these effects are relatively small. All of Canada's at‐risk butterfly species are located in these human‐dominated areas. Main conclusions Temperature affects butterfly species richness to a greater extent than habitat heterogeneity at fine spatial scales and is generally far more important than precipitation, supporting both the species richness–energy and habitat heterogeneity hypotheses. Human activities, especially in southern Canada, appear to cause surprisingly consistent trends in biotic homogenization across this region, perhaps through range expansion of common species and loss of range‐restricted species.  相似文献   

16.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   

17.
Restoration treatments have been widely advocated to address declining conditions in Pinus ponderosa forests throughout the western United States. However, few studies have examined treatment effects on individual plant species or whether responses differ for common species and uncommon species (those with low abundance in the community)—information that may be critical in managing for long‐term biodiversity. We investigated understory species responses to restoration treatments in ponderosa pine/Douglas‐fir forests using a randomized block experimental design with three blocks and four treatments (control, burn‐only, thin‐only, and thin‐burn). Understory vegetation was sampled before treatment and for three consecutive years after treatment. We used richness and an index of uniqueness to compare responses of common and uncommon native understory species among treatments, and indicator species analysis to identify individual species that responded to each treatment. Treatments that included thinning had significantly more unique species assemblages than the control. The thin‐only treatment increased common native species richness, whereas all active treatments significantly increased uncommon native species richness over the control, especially the thin‐burn. Generally, life‐forms did not explain the responses of individual species, though in the final sampling year several graminoids were exclusively indicative of treatments that included thinning. Very few species had reduced abundance in the thinning and burning treatments by the final sample year, whereas many uncommon and short‐lived species benefited from active treatments, especially the combined thin‐burn treatment. Active restoration treatments in these forests may foster plant diversity by minimally impacting common species while significantly benefiting disturbance‐dependent native species.  相似文献   

18.
1. Using a palaeolimnological approach in shallow lakes, we quantified the species richness responses of diatoms and Cladocera to phosphorus enrichment. We also examined differences in species richness responses between littoral and pelagic assemblages of our focal communities. To address both spatial and temporal relationships, our study includes an analysis of both surface sediments from 40 lakes and of a lake sediment record spanning c. 120 years. The objective of our study was to determine whether similar species richness patterns occurred across trophic levels, as well as along spatial and temporal gradients. 2. We found that both diatom and Cladocera species richness estimates significantly declined with increasing phosphorus across space and through time. When the assemblages were subdivided according to known habitat preferences, littoral biodiversity maintained a negative trend, whereas pelagic species richness tended to show no relationship with phosphorus. 3. Negative productivity–diversity patterns have been observed across almost all palaeolimnological studies that span large productivity gradients. This congruence in patterns is most likely due to the similarity in data collection methods and in focal communities studied. The contrasting responses between littoral and pelagic assemblages may be explained by the differences in physical habitat and the pool of taxa in each of these environments. Consistent with the literature, we found statistical support for the idea that littoral diversity declines could be explained by an interaction between macrophytes and nutrients along strong trophic gradients. The general lack of a diversity response in our pelagic assemblages could be attributable to the limited pool of subfossil taxa. The response of the pelagic diatom could also be related to their broad range of nutrient tolerances. 4. The observed negative response of species richness to phosphorus enrichment, particularly in the littoral assemblages, has implications for ecosystems functioning because communities with reduced biodiversity often are less resilient to anthropogenic change.  相似文献   

19.
Little is known about the diversity of tropical animal communities in recently fire‐affected environments. Here we assessed species richness, evenness, and community similarity of butterflies and odonates in landscapes located in unburned isolates and burned areas in a habitat mosaic that was severely affected by the 1997/98 ENSO (El Niño Southern Oscillation) event in east Kalimantan, Indonesian Borneo. In addition related community similarity to variation in geographic distance between sampling sites and the habitat/vegetation structure Species richness and evenness differed significantly among landscapes but there was no congruence between both taxa. The species richness of butterflies was, for example, highest in sites located in a very large unburned isolate whereas odonate species richness was highest in sites located in a small unburned isolate and once‐burned forest. We also found substantial variation in the habitat/vegetation structure among landscapes but this was mainly due to variation between unburned and burned landscapes and variation among burned landscapes. Both distance and environment (habitat/vegetation) contributed substantially to explaining variation in the community similarity (beta diversity) of both taxa. The contribution of the environment was, however, mainly due to variation between unburned and burned landscapes, which contained very different assemblages of both taxa. Sites located in the burned forest contained assemblages that were intermediate between assemblages from sites in unburned forest and sites from a highly degraded slash‐and‐burn area indicating that the burned forest was probably recolonised by species from these disparate environments. We, furthermore, note that in contrast to species richness (alpha diversity) the patterns of community similarity (beta diversity) were highly congruent between both taxa. These results indicate that community‐wide multivariate measures of beta diversity are more consistent among taxa and more reliable indicators of disturbance, such as ENSO‐induced burning, than univariate measures.  相似文献   

20.
While the high species diversity of tropical arthropod communities has often been linked to marked spatial heterogeneity, their temporal dynamics have received little attention. This study addresses this gap by examining spatio‐temporal variation in the arthropod communities of a tropical montane forest in Honduras. By employing DNA barcode analysis and Malaise trap sampling across 4 years and five sites, 51,596 specimens were assigned to 8,193 presumptive species. High beta diversity was linked more strongly to elevation than geographic distance, decreasing by 12% when only the dominant species were considered. When sampling effort was increased by deploying more traps at a site, beta diversity only decreased by 2%, but extending sampling across years decreased beta diversity by 27%. Species inconsistently detected among years, likely transients from other settings, drove the low similarity in species composition among traps only a few metres apart. The dominant, temporally persistent species substantially influenced the cyclic pattern of change in community composition among years. This pattern likely results from divergence–convergence dynamics, suggesting a stable baseline of temporal turnover in each community. The overall results establish that large sample sizes are necessary to reveal species richness, but are not essential for quantifying beta diversity. This study further highlights the need for standardized methods of sampling and species identification to generate the comparative data required to evaluate biodiversity change in space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号