Many human genetic disorders are caused by mutations in protein‐coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant‐negative mechanism, whereby mutated subunits can disrupt the activity of wild‐type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes. 相似文献
The Multiplex Ligation-dependent Probe Amplification assay (MLPA) is the method of choice for the initial mutation screen
in the analysis of a large number of genes where partial or total gene deletion is part of the mutation spectrum. Although
MLPA dosage probes are usually designed to bind to normal DNA sequence to identify dosage imbalance, point mutation-specific
MLPA probes can also be made. Using the dystrophin gene as a model, we have designed two MLPA probe multiplexes that are specific
to a number of commonly listed point mutations in the Leiden dystrophin point mutation database (http://www.dmd.nl). The point
mutation probes are designed to work simultaneously with two widely used dystrophin MLPA multiplexes, allowing both full dosage
analysis and partial point mutation analysis in a single test. This approach may be adapted for other syndromes with well
defined common point mutations or polymorphisms. 相似文献
Although gene duplications provide genetic backup and allow genomic changes under relaxed selection, they may potentially limit gene flow. When different copies of a duplicated gene are pseudofunctionalized in different genotypes, genetic incompatibilities can arise in their hybrid offspring. Although such cases have been reported after manual crosses, it remains unclear whether they occur in nature and how they affect natural populations. Here, we identified four duplicated-gene based incompatibilities including one previously not reported within an artificial Arabidopsis intercross population. Unexpectedly, however, for each of the genetic incompatibilities we also identified the incompatible alleles in natural populations based on the genomes of 1,135 Arabidopsis accessions published by the 1001 Genomes Project. Using the presence of incompatible allele combinations as phenotypes for GWAS, we mapped genomic regions that included additional gene copies which likely rescue the genetic incompatibility. Reconstructing the geographic origins and evolutionary trajectories of the individual alleles suggested that incompatible alleles frequently coexist, even in geographically closed regions, and that their effects can be overcome by additional gene copies collectively shaping the evolutionary dynamics of duplicated genes during population history. 相似文献
We studied the contents of flavonols (kaempferol and quercetin) in the meristem of vegetative and generative apices of the main plant shoot in floral Papaver somniferum L. mutants, as well as in the normal plants at successive stages of flower development. Five stages of flower development were distinguished. Flavonols (kaempferol and quercetin) were present in all flower organs at all stages of floral morphogenesis we studied. However, their contents and distribution in different organs and at different stages of flower development markedly varied. No significant differences were found in the contents of flavonols in the meristems of vegetative and generative apices of the main shoot in the lines of floral mutants, as well as between the lines with different amounts of vegetative phytomeres. In the plants with normal flower structure, the contents of flavonols (kaempferol + quercetin) sharply increased with the beginning of differentiation of flower organs, i.e. from stage 3, to reach a maximum in the open flower, when gametogenesis is terminated and fertilization takes place. The level of flavonol contents in the petals (upper part) and stamen was at a maximum at all stages of flower development, while that in the gynaecium was at a minimum. The kaempferol : quercetin ratio was shifted towards quercetin at successive stages of flower development, most significantly in the stamens. The involvement of flavonols in the regulation of floral morphogenesis at stages of flower organs differentiation and functioning is discussed. 相似文献
Despite a great deal of theoretical attention, we have limited empirical data about how ploidy influences the rate of adaptation. We evolved isogenic haploid and diploid populations of Saccharomyces cerevisiae for 200 generations in seven different environments. We measured the competitive fitness of all ancestral and evolved lines against a common competitor and find that in all seven environments, haploid lines adapted faster than diploids, significantly so in three environments. We apply theory that relates the rates of adaptation and measured effective population sizes to the properties of beneficial mutations. We obtained rough estimates of the average selection coefficients in haploids between 2% and 10% for these first selected mutations. Results were consistent with semi-dominant to dominant mutations in four environments and recessive to additive mutations in two other environments. These results are consistent with theory that predicts haploids should evolve faster than diploids at large population sizes. 相似文献
We carried out an experiment of inbreeding and upward artificial selection for egg-to-adult viability in a recently captured population of Drosophila melanogaster, as well as computer simulations of the experimental design, in order to obtain information on the nature of genetic variation for this important fitness component. The inbreeding depression was linear with a rate of 0.70 +/- 0.11% of the initial mean per 1% increase in inbreeding coefficient, and the realized heritability was 0.06 +/- 0.07. We compared the empirical observations of inbreeding depression and selection response with computer simulations assuming a balance between the occurrence of partially recessive deleterious mutations and their elimination by selection. Our results suggest that a model assuming mutation-selection balance with realistic mutational parameters can explain the genetic variation for viability in the natural population studied. Several mutational models are incompatible with some observations and can be discarded. Mutational models assuming a low rate of mutations of large average effect and highly recessive gene action, and others assuming a high rate of mutations of small average effect and close to additive gene action, are compatible with all the observations. 相似文献
Molecular genetic analysis of allelic deletions from the loci containing the tumor suppressor genes p16, p15, p19 (9p21), RB1 (13p14), PTEN (10q23), and TP53 (17p13); microsatellite instability; and activating mutations of K-RAS (codons 12 and 13) was performed in four different segments of sporadic colorectal cancer (CRC) in 11 patients. Intratumoral genetic heterogenity was detected in 9 out of 11 (81%) colorectal adenocarcinomas and was morphologically validated. Analysis of different segments of one tumor reported that not only intratumoral heterogeneity, but also the order of the appearance and distribution of molecular anomalies during tumorigenesis in sporadic CRC. K-RAS point mutations and anomalies of the p16-RB1-cyclin D pathway were assumed to occur prior to microsatellite instability and PTEN deletions during tumor progression. 相似文献
The heterogeneity of cancer genomes in terms of acquired mutations complicates the identification of genes whose modification may exert a driver role in tumorigenesis. In this study, we present a novel method that integrates expression profiles, mutation effects, and systemic properties of mutated genes to identify novel cancer drivers. We applied our method to ovarian cancer samples and were able to identify putative drivers in the majority of carcinomas without mutations in known cancer genes, thus suggesting that it can be used as a complementary approach to find rare driver mutations that cannot be detected using frequency-based approaches. 相似文献
In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selection is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mutations reach fixation slightly more slowly than neutral ones (at most 5%). This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent a wide fraction of newly arising mutations, on average survive in a population slightly longer than neutral ones, before getting lost. Consequently, these mutations are on average slightly older than neutral ones, in contrast with previous expectations. Furthermore, they slightly increase the amount of weakly deleterious polymorphisms, as a consequence of the longer unconditional sojourn times compared to neutral mutations. 相似文献
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole‐genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire–Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss‐of‐function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss‐of‐function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. 相似文献
Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α–synuclein levels in substantia nigra pars compacta (SNc). Excess α‐synuclein spurs Lewy‐like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate‐limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α–synuclein for behavior and α–synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α‐synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α‐synuclein. Low adrenal PP2A activity co‐occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α–synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α‐synuclein pathology associated with pre‐motor stages of PD.