首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Transferrin and Transferrin Receptor Function in Brain Barrier Systems   总被引:15,自引:0,他引:15  
1. Iron (Fe) is an essential component of virtually all types of cells and organisms. In plasma and interstitial fluids, Fe is carried by transferrin. Iron-containing transferrin has a high affinity for the transferrin receptor, which is present on all cells with a requirement for Fe. The degree of expression of transferrin receptors on most types of cells is determined by the level of Fe supply and their rate of proliferation.2. The brain, like other organs, requires Fe for metabolic processes and suffers from disturbed function when a Fe deficiency or excess occurs. Hence, the transport of Fe across brain barrier systems must be regulated. The interaction between transferrin and transferrin receptor appears to serve this function in the blood–brain, blood–CSF, and cellular–plasmalemma barriers. Transferrin is present in blood plasma and brain extracellular fluids, and the transferrin receptor is present on brain capillary endothelial cells, choroid plexus epithelial cells, neurons, and probably also glial cells.3. The rate of Fe transport from plasma to brain is developmentally regulated, peaking in the first few weeks of postnatal life in the rat, after which it decreases rapidly to low values. Two mechanisms for Fe transport across the blood–brain barrier have been proposed. One is that the Fe–transferrin complex is transported intact across the capillary wall by receptor-mediated transcytosis. In the second, Fe transport is the result of receptor-mediated endocytosis of Fe–transferrin by capillary endothelial cells, followed by release of Fe from transferrin within the cell, recycling of transferrin to the blood, and transport of Fe into the brain. Current evidence indicates that although some transcytosis of transferrin does occur, the amount is quantitatively insufficient to account for the rate of Fe transport, and the majority of Fe transport probably occurs by the second of the above mechanisms.4. An additional route of Fe and transferrin transport from the blood to the brain is via the blood–CSF barrier and from the CSF into the brain. Iron-containing transferrin is transported through the blood–CSF barrier by a mechanism that appears to be regulated by developmental stage and iron status. The transfer of transferrin from blood to CSF is higher than that of albumin, which may be due to the presence of transferrin receptors on choroid plexus epithelial cells so that transferrin can be transported across the cells by a receptor-mediated process as well as by nonselective mechanisms.5. Transferrin receptors have been detected in neurons in vivo and in cultured glial cells. Transferrin is present in the brain interstitial fluid, and it is generally assumed that Fe which transverses the blood–brain barrier is rapidly bound by brain transferrin and can then be taken up by receptor-mediated endocytosis in brain cells. The uptake of transferrin-bound Fe by neurons and glial cells is probably regulated by the number of transferrin receptors present on cells, which changes during development and in conditions with an altered iron status.6. This review focuses on the information available on the functions of transferrin and transferrin receptor with respect to Fe transport across the blood–brain and blood–CSF barriers and the cell membranes of neurons and glial cells.  相似文献   

2.
1. The pathogenesis of bilirubin encephalopathy is multifactorial, involving the transport of bilirubin or albumin/bilirubin across the blood–brain barrier and delivering bilirubin to target neurons.2. The relative importance of the blood–brain barrier, unconjugated bilirubin levels, serum binding, and tissue susceptibility in this process is only partially understood. Even at dangerously high serum levels, bilirubin traverses the intact blood–brain barrier slowly, requiring time for encephalopathy to occur, although deposition of bilirubin can be rapid if a surge in plasma unbound bilirubin is produced by administering a drug which competes with bilirubin for binding to albumin.3. There may be maturational changes in permeability both in the fetus and postnatally which protect the brain from bilirubin.4. Disruption or partial disruption of the blood–brain barrier by disease or hypoxic ischemic injury will facilitate transport of bilirubin/albumin into brain, but the relative affinities of albumin and target neurons will determine whether the tissue bilirubin load is sufficient for toxicity to occur.  相似文献   

3.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


4.
脑铁代谢和神经变性性疾病   总被引:10,自引:0,他引:10  
最近关于脑铁代谢研究的新成果,尤其是与脑铁转运、储存、调节相关的某些突变基因的发现,足以得出以下结论,即异常增高的脑铁至少是部份神经变性疾病的起始原因。研究显示,脑铁过量积聚主要是由于遗传性和非遗传性因素所引起的某些服铁代谢蛋白功能异常或表达失控。正是异常增高的脑铁触发一系列病理反应,最终导致神经为性性疾病病人服神经元死亡。本文简要叙述了目前对服铁分布、功能和脑铁代谢蛋白的认识,讨论了内铁转运机制以及服铁和神经变性性疾病之间的关系研究的新进展。  相似文献   

5.
1. P-Glycoprotein is a 170-kDa transmembrane glycoprotein active efflux system that confers multidrug resistance in tumors, as well as normal tissues including brain.2. The classical model of multidrug resistance in brain places the expression of P-glycoprotein at the luminal membrane of the brain microvascular endothelial cell. However, recent studies have been performed with human brain microvessels and double-labeling confocal microscopy using (a) the MRK16 antibody to human P-glycoprotein, (b) an antiserum to glial fibrillary acidic protein (GFAP), an astrocyte foot process marker, or (c) an antiserum to the GLUT1 glucose transporter, a brain endothelial plasma membrane marker. These results provide evidence for a revised model of P-glycoprotein function at the brain microvasculature. In human brain capillaries, there is colocalization of immunoreactive P-glycoprotein with astrocytic GFAP but not with endothelial GLUT1 glucose transporter.3. In the revised model of multidrug resistance in brain, P-glycoprotein is hypothesized to function at the plasma membrane of astrocyte foot processes. These astrocyte foot processes invest the brain microvascular endothelium but are located behind the blood–brain barrier in vivo, which is formed by the brain capillary endothelial plasma membrane.4. In the classical model, an inhibition of endothelial P-glycoprotein would result in both an increase in the blood–brain barrier permeability to a given drug substrate of P-glycoprotein and an increase in the brain volume of distribution (V D) of the drug. However, in the revised model of P-glycoprotein function in brain, which positions this protein transporter at the astrocyte foot process, an inhibition of P-glycoprotein would result in no increase in blood–brain barrier permeability, per se, but only an increase in the V D in brain of P-glycoprotein substrates.  相似文献   

6.
1. A clinical trial of quinacrine in patients with Creutzfeldt-Jakob disease is now in progress. The permeability of drugs through the blood-brain barrier (BBB) is a determinant of their therapeutic efficacy for prion diseases. The mechanism of quinacrine transport across the BBB was investigated using mouse brain endothelial cells (MBEC4). 2. The permeability of quinacrine through MBEC4 cells was lower than that of sodium fluorescein, a BBB-impermeable marker. The basolateral-to-apical transport of quinacrine was greater than its apical-to-basolateral transport. In the presence of P-glycoprotein (P-gp) inhibitor, cyclosporine or verapamil, the apical-to-basolateral transport of quinacrine increased. The uptake of quinacrine by MBEC4 cells was enhanced in the presence of cyclosporine or verapamil. 3. Quinacrine uptake was highly concentrative, this event being carried out by a saturable and carrier-mediated system with an apparent Km of 52.1 microM. Quinacrine uptake was insensitive to Na+-depletion and changes in the membrane potential and sensitive to changes in pH. This uptake was decreased by tetraethylammonium and cimetidine, a substrate and an inhibitor of organic cation transporters, respectively. 4. These findings suggest that quinacrine transport at the BBB is mediated by the efflux system (P-gp) and the influx system (organic cation transporter-like machinery).  相似文献   

7.
BackgroundIn neurodegenerative diseases such as Alzheimer's and Parkinson's, excessive irons as well as lactoferrin (Lf), but not transferrin (Tf), have been found in and around the affected regions of the brain. These evidences suggest that lactoferrin plays a critical role during neurodegenerative diseases, although Lf-mediated iron transport across blood-brain barrier (BBB) is negligible compared to that of transferrin in normal condition. However, the kinetics of lactoferrins and lactoferrin-mediated iron transport are still unknown.MethodTo determine the kinetic rate constants of lactoferrin-mediated iron transport through BBB, a mass-action based ordinary differential equation model has been presented. A Bayesian framework is developed to estimate the kinetic rate parameters from posterior probability density functions. The iron transport across BBB is studied by considering both Lf- and Tf-mediated pathways for both normal and pathologic conditions.ResultsUsing the point estimates of kinetic parameters, our model can effectively reproduce the experimental data of iron transport through BBB endothelial cells. The robustness of the model and parameter estimation process are further verified by perturbation of kinetic parameters. Our results show that surge in high-affinity receptor density increases lactoferrin as well as iron in the brain.ConclusionsDue to the lack of a feedback loop such as iron regulatory proteins (IRPs) for lactoferrin, iron can transport to the brain continuously, which might increase brain iron to pathological levels and can contribute to neurodegeneration.General significanceThis study provides an improved understanding of presence of lactoferrin and iron in the brain during neurodegenerative diseases.  相似文献   

8.
Brain metastases are a common feature of malignant melanoma and are associated with poor prognosis. Melanotransferrin (MTf), one of several antigens associated with the surface of melanoma cells, has been demonstrated to promote cell invasion. In this study, we investigated the role of membrane‐bound MTf in several of the steps leading to the development of melanoma brain metastasis. Our results indicated that MTf‐positive cells were detected in the brains of nude mice injected intravenously with human melanoma SK‐Mel 28 cells. Moreover, administration of a single dose of a monoclonal antibody (L235) directed against human MTf significantly reduced the development of human melanoma brain metastases in nude mice. The ability of melanoma cells to cross the blood–brain barrier (BBB) in vitro is correlated with their MTf expression levels at the cell surface. Overall, our results indicated that membrane‐bound MTf is a key element in melanoma cell transmigration across the BBB and subsequent brain metastasis. Thus, these data suggest MTf as an attractive target and demonstrate the therapeutic potential of an anti‐MTf mAb for preventing metastatic melanoma.  相似文献   

9.
Supply of iron into human cells is achieved by iron carrier protein transferrin and its receptor that upon complex formation get internalized by endocytosis. Similarly, the iron needs to be delivered into the brain, and necessitates the transport across the blood-brain barrier. While there are still unanswered questions about these mechanisms, extensive efforts have been made to use the system for delivery of therapeutics into biological compartments. The dimeric form of the receptor, where each subunit consists of three domains, further complicates the detailed investigation of molecular determinants responsible for guiding the receptor interactions with other proteins. Especially the apical domain's biological function has been elusive. To further the study of transferrin receptor, we have computationally decoupled the apical domain for soluble expression, and validated the design strategy by structure determination. Besides presenting a methodology for solubilizing domains, the results will allow for study of apical domain's function.  相似文献   

10.
血脑屏障与脑血管疾病的相关研究   总被引:1,自引:0,他引:1  
血脑屏障(blood brain barrier,BBB)的主要结构包括:脑毛细血管内皮细胞及其间的紧密连接(tight junction,TJ)、基底膜、基 底膜下星型胶质细胞终足。血脑屏障是存在于血液和脑组织之间的一层屏障系统,在许多大脑疾患的病理过程中,BBB 的破坏导 致通透性增高都是不可避免的一个环节。BBB是保证中枢神经系统的正常生理功能的重要屏障系统。目前已有大量关于血脑屏 障通透性在脑血管疾病中的变化研究。本文分别从血脑屏障的结构和功能,药物通过血脑屏障的方法和功能,脑缺血损伤、阿尔 茨海默病、帕金森病和多发性硬化症等不同的脑病变与血脑屏障通透性的变化及中医药应用等方面做一综述。有针对性地对 BBB和大脑疾病进行进一步的研究与探索,将会为临床治疗相关疾病带来新的视角与机遇。  相似文献   

11.
Monoclonal antibodies (MAb) directed against the Abeta amyloid peptide of Alzheimer's disease (AD) are potential new therapies for AD, since these antibodies disaggregate brain amyloid plaque. However, the MAb is not transported across the blood–brain barrier (BBB). To enable BBB transport, a single chain Fv (ScFv) antibody against the Abeta peptide of AD was re‐engineered as a fusion protein with the MAb against the human insulin receptor (HIR). The HIRMAb acts as a molecular Trojan horse to ferry the ScFv therapeutic antibody across the BBB. Chinese hamster ovary (CHO) cells were stably transfected with a tandem vector encoding the heavy and light chains of the HIRMAb–ScFv fusion protein. A high secreting line was isolated following methotrexate amplification and dilutional cloning. The HIRMAb–ScFv fusion protein in conditioned serum‐free medium was purified by protein A affinity chromatography. The fusion protein was stable as a liquid formulation, and retained high‐affinity binding of both the HIR and the Abeta amyloid peptide. The HIRMAb–ScFv fusion protein was radiolabeled with the 125I‐Bolton–Hunter reagent, followed by measurement of the pharmacokinetics of plasma clearance and brain uptake in the adult Rhesus monkey. The HIRMAb–ScFv fusion protein was rapidly cleared from plasma and was transported across the primate BBB in vivo. In conclusion, the HIRMAb–ScFv fusion protein is a new class of antibody‐based therapeutic for AD that has been specifically engineered to cross the human BBB. Biotechnol. Bioeng. 2010; 105: 627–635. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Determinants of Passive Drug Entry into the Central Nervous System   总被引:8,自引:0,他引:8  
1. The blood–brain barriers restrict the passive diffusion of many drugs into the brain and constitute a significant obstacle in the pharmacological treatment of central nervous system diseases and disorders. The degree of restriction they impose is variable, with some lipid-insoluble drugs effectively excluded from the brain, while many lipid-soluble drugs do not appear to be subject to any restriction.2. The ease with which any particular drug diffuses across the blood–brain barrier is determined largely by the number and strength of intermolecular forces holding it to surrounding water molecules. By quantifying the molecular features that contribute to these forces, it is possible to predict the in vivo blood–brain barrier permeability of a drug from its molecular structure. Dipolarity, polarizability, and hydrogen bonding ability are factors that appear to reduce permeability, whereas molecular volume (size) and molar refraction are associated with increased permeability.3. Increasing the passive entry of restricted drugs into the central nervous system can be achieved by disrupting the blood–brain barrier (increased paracellular diffusion) or by modifying the structure of restricted drugs to temporarily or permanently increase their lipid solubility (increased transcellular permeability).4. Competitive inhibition of outwardly directed active efflux mechanisms (P-glycoprotein and MRP, the multidrug resistance-related protein) can also significantly increase the accumulation of certain drugs within the central nervous system.  相似文献   

13.
Summary 1. The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood–brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers.2. Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed.3. BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed.4. Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated.5. Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

14.
Neural Induction of the Blood–Brain Barrier: Still an Enigma   总被引:5,自引:0,他引:5  
1. The study of the blood–brain barrier and its various realms offers a myriad of opportunities for scientific exploration. This review focuses on two of these areas in particular: the induction of the blood–brain barrier and the molecular mechanisms underlying this developmental process.2. The creation of the blood–brain barrier is considered a specific step in the differentiation of cerebral capillary endothelial cells, resulting in a number of biochemical and functional alterations. Although the specific endothelial properties which maintain the homeostasis in the central nervous system necessary for neuronal function have been well described, the inductive mechanisms which trigger blood–brain barrier establishment in capillary endothelial cells are unknown.3. The timetable of blood–brain barrier formation is still a matter of debate, caused largely by the use of varying experimental systems and by the general difficulty of quantitatively measuring the degree of blood–brain barrier tightness. However, there is a general consensus that a gradual formation of the blood–brain barrier starts shortly after intraneural neovascularization and that the neural microenvironment (neurons and/or astrocytes) plays a key role in inducing blood–brain barrier function in capillary endothelial cells. This view stems from numerous in vitro experiments using mostly cocultures of capillary endothelial cells and astrocytes and assays for easily measurable blood–brain barrier markers. In vivo, there are great difficulties in proving the inductive influence of the neuronal environment. Also dealt with in this article are brain tumors, the least understood in vivo systems, and the induction or noninduction of barrier function in the newly established tumor vascularization.4. Finally, this review tries to elucidate the question concerning the nature of the inductive signal eliciting blood–brain barrier formation in the cerebral microvasculature.  相似文献   

15.
随着研究的深入,脑铁代谢相关分子突变引起的疾病越来越多的被人们所认识。脑铁代谢紊乱可能是神经退行性疾病的发病原因之一。对脑铁代谢机理的认识将为预防和治疗脑铁代谢紊乱相关疾病提供重要的理论根据。对脑铁代谢的过程,脑铁代谢的相关分子以及这些分子对脑内铁稳态的调控作用作一介绍。  相似文献   

16.
Carnitine is known to accumulate in brain, therefore transport of carnitine through the blood-brain barrier was studied in an in vitro system using bovine brain capillary endothelial cells (BBCEC) grown on filter inserts in a co-culture system with glial cells. Long-term exposure of BBCEC to carnitine resulted in a high accumulation of long-chain acyl carnitines, which decreased dramatically upon removal of carnitine. Kinetic analysis of carnitine accumulation indicated a possibility of functioning of more than one transporter. BBCEC were incubated in the presence of substrates and inhibitors of known carnitine transporters added from either apical or basolateral side. Inhibition by replacement of sodium and expression of OCTN2 (RT-PCR) were in agreement with earlier reports on the functioning of OCTN2 in apical membrane. For the first time, functioning of OCTN2 was demonstrated in the basolateral membrane, as well as functioning in both membranes of a low affinity carnitine transporter B(0,+). Expression of B(0,+) in BBCEC was confirmed by RT-PCR. These results suggest that OCTN2 and B(0,+) could be involved in carnitine transport in both the apical and basolateral membrane.  相似文献   

17.
Iron accumulation or iron overload in brain is commonly associated with neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases, and also plays a role in cellular damage following hemorrhagic stroke and traumatic brain injury. Despite the brain’s highly regulated system for iron utilization and metabolism, these disorders often present following disruptions within iron metabolic pathways. Such dysregulation allows saturation of proteins involved in iron transport and storage, and may cause an increase in free ferrous iron within brain leading to oxidative damage. Not only do astrocytes, neurons, and brain endothelial cells serve unique purposes within the brain, but their individual cell types are equipped with distinct protective mechanisms against iron-induced injury. This review evaluates iron metabolism within the brain under homeostatic and pathological conditions and focuses on the mechanism(s) of brain cellular iron toxicity and differential responses of astrocytes, neurons, and brain vascular endothelial cells to excessive free iron. Special issue dedicated to Dr. Moussa Youdim. An erratum to this article can be found at  相似文献   

18.
1. The fetal brain develops within its own environment, which is protected from free exchange of most molecules among its extracellular fluid, blood plasma, and cerebrospinal fluid (CSF) by a set of mechanisms described collectively as brain barriers.2. There are high concentrations of proteins in fetal CSF, which are due not to immaturity of the blood–CSF barrier (tight junctions between the epithelial cells of the choroid plexus), but to a specialized transcellular mechanism that specifically transfers some proteins across choroid plexus epithelial cells in the immature brain.3. The proteins in CSF are excluded from the extracellular fluid of the immature brain by the presence of barriers at the CSF–brain interfaces on the inner and outer surfaces of the immature brain. These barriers are not present in the adult.4. Some plasma proteins are present within the cells of the developing brain. Their presence may be explained by a combination of specific uptake from the CSF and synthesis in situ. 5. Information about the composition of the CSF (electrolytes as well as proteins) in the developing brain is of importance for the culture conditions used for experiments with fetal brain tissue in vitro, as neurons in the developing brain are exposed to relatively high concentrations of proteins only when they have cell surface membrane contact with CSF.6. The developmental importance of high protein concentrations in CSF of the immature brain is not understood but may be involved in providing the physical force (colloid osmotic pressure) for expansion of the cerebral ventricles during brain development, as well as possibly having nutritive and specific cell development functions.  相似文献   

19.
The blood–brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14‐cis‐eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n ? 6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell® inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2), an eicosanoid known to facilitate opening of the blood–brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein‐labeled dextran from apical to basolateral medium. ARA‐mediated permeability was attenuated by specific cyclooxygenase‐2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA‐mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA.

  相似文献   


20.
Leptin is produced in adipose tissue in the periphery, but its satiety effect is exerted in the CNS that it reaches by a saturable transport system across the blood–brain barrier (BBB). The short form of the leptin receptor has been hypothesized to be the transporter, with impaired transport of leptin being implicated in obesity. In Koletsky rats, the splice variant that gives rise to the short form of the leptin receptor contains a point mutation that results in marked obesity. We studied the transport of leptin across the BBB in Koletsky rats and found it to be significantly less than in their lean littermates. By contrast, Sprague–Dawley rats matched in weight to each of these two groups showed no difference in the blood–to–brain influx of leptin. HPLC showed that most of the leptin crossing the BBB in rats remained intact and capillary depletion showed that most of the leptin reached the parenchyma of the brain. The results indicate that the short form of the leptin receptor is involved in the transport of leptin across the BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号