首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Stromatolites and wrinkle structures are often taken to be an important indicator for early life. While both may be shaped by microbial mat growth, this can be open to doubt, so that the contribution of abiotic processes in their construction always needs to be established (Grotzinger & Knoll, 1999). We here report laboratory spray deposition experiments that can generate stromatolites and wrinkle structures in the absence of microbes. These minicolumnar and sometimes branched stromatolites are produced artificially by the aggregation of a synthetic colloid in a turbulent flow regime. They self-organize at the relatively low particle concentrations found in the outer parts of a spray beam. This contrasts with adjacent stratiform deposits that are produced by high rates of colloid deposition and relatively low sediment viscosities found in the centre of a spray beam. These stratiform laminae become subsequently wrinkled during hardening of the colloid. These results support numerical models that together suggest that physicochemical processes are capable of generating laminated sedimentary structures without the direct participation of biology. Geological environments where comparable abiogenic stromatolites and wrinkle structures may be found include: splash-zone silica sinters, desert varnish crusts and early Archean cherts formed from silica gel precursors.  相似文献   

2.
Subsurface sediments obtained from three cores drilled to depths of 260 m below the surface in South Carolina were analyzed for heterotrophic bacteria; N2‐fixing microaerophiles; and nitrifying, sulfur‐oxidizing, and H2‐oxidizing lithotrophic bacteria. In addition, pore waters were extracted for chemical analysis of inorganic nitrogen species, sulfate, dissolved organic carbon, pH, and Eh. Autotroph populations were generally less than 103 most probable number (MPN) g‐1 dry sediment with sulfur‐oxidizing bacteria, detected in 60% of the sediment samples, being the most frequently encountered group. Nitrifying bacteria were detected mainly in sediments from one borehole (P28), and their populations in those sediments were correlated with pore‐water ammonium concentrations. Populations of heterotrophic bacteria in 60% of the sediments were greater than 106 colony forming units (CFU) g‐1 dry sediment and were typically lower in sediments of high clay content and low pH. Microaerophilic N2‐fixing bacteria were cultured from >50% and bacteria capable of growth on H2 were cultured from 35% of the subsurface sediments examined. Sediment texture, which controls porosity, water potential, and hydraulic conductivity, appears to be a major factor influencing microbial populations in coastal plain subsurface sediments.  相似文献   

3.
Cold‐water coral (CWC) mounds are build‐ups comprised of coral‐dominated intervals alternating with a mixed carbonate‐siliciclastic matrix. At some locations, CWC mounds are influenced by methane seepage, but the impact of methane on CWC mounds is poorly understood. To constrain the potential impact of methane on CWC mound growth, lipid biomarker investigations were combined with mineralogical and petrographic analyses to investigate the anaerobic oxidation of methane (AOM) and authigenic carbonate formation in sediment from a seep‐affected CWC mound in the Gulf of Cadiz. The occurrence of AOM was confirmed by characteristic lipids found within a semi‐lithified zone (SLZ) consisting of authigenic aragonite, high‐magnesium calcite and calcium‐excess dolomite. The formation of high‐Mg calcite is attributed to AOM, acting as a lithifying agent. Aragonite is only a minor phase. Ca‐excess dolomite in the SLZ and upper parts may be formed by organoclastic sulphate reduction, favouring precipitation by increased alkalinity. The AOM biomarkers in the SLZ include isoprenoid‐based archaeal membrane lipids, such as abundant glycerol dibiphytanyl glycerol tetraethers (GDGTs) dominated by GDGT‐2. The δ13C values of GDGT‐2, measured as ether‐cleaved monocyclic biphytanes, are as low as ?100‰ versus V‐PDB. Further, bacterial dialkyl glycerol diethers with two anteiso‐C15 alkyl chains and δ13C values of ?81‰ are interpreted as biomarkers of sulphate‐reducing bacteria. The lipid biomarker signatures and mineralogical patterns suggest that anaerobic methane‐oxidizing archaea of the ANME‐1 group thrived in the subsurface at times of slow and diffusive methane seepage. Petrographic analyses revealed that the SLZ was exhumed at some point (e.g. signs of bioerosion of the semi‐lithified sediment), providing a hard substrate for CWC larval settlement. In addition, this work reveals that AOM‐induced semi‐lithification likely played a role in mound stabilization. Lipid biomarker analysis proves to be a powerful tool to disentangle early diagenetic processes induced by microbial metabolisms.  相似文献   

4.
Assessing the role that physical processes play in restricting microbial mat distribution has been difficult due to the primary control of bioturbation in the modern ocean. To isolate and determine the physical controls on microbial mat distribution and preservation, a time in Earth’s history must be examined when bioturbation was not the primary control. This restricts the window of observation primarily to the Precambrian and Cambrian, which precede the development of typical Phanerozoic and modern levels of bioturbation. Lower Cambrian strata of the southern Great Basin, United States, record the widespread development of seafloor microbial mats in shallow shelf and nearshore settings. These microbial mats are recorded by wrinkle structures, which consist of millimeter-scale ridges and sinuous troughs that represent the former presence of a surface microbial mat. Wrinkle structures within these strata occur exclusively within heterolithic deposits of the offshore transition, i.e., between fair-weather wave base and storm wave base, and within heterolithic tidal-flat deposits. Wrinkle structures are not preserved in siltstone-dominated offshore deposits or amalgamated shoreface sandstones. The preservation of wrinkle structures within these environments is due to: (1) the development of microbial mats atop clean quartz-rich sands for growth and casting of the structures; and (2) the draping of the microbial mat by finer-grained sediment to inhibit erosion. The exclusion from offshore deposits may be due to a lack of sufficient sunlight, whereas the restriction from the shoreface is likely due to the amalgamation of proximal tempestites, resulting in the erosion of any incipient microbial mat development.  相似文献   

5.
Aims: To isolate and identify alkane‐degrading bacteria from deep‐sea superficial sediments sampled at a north‐western Mediterranean station. Methods and Results: Sediments from the water/sediment interface at a 2400 m depth were sampled with a multicorer at the ANTARES site off the French Mediterranean coast and were promptly enriched with Maya crude oil as the sole source of carbon and energy. Alkane‐degrading bacteria belonging to the genera Alcanivorax, Pseudomonas, Marinobacter, Rhodococcus and Clavibacter‐like were isolated, indicating that the same groups were potentially involved in hydrocarbon biodegradation in deep sea as in coastal waters. Conclusions: These results confirm that members of Alcanivorax are important obligate alkane degraders in deep‐sea environments and coexist with other degrading bacteria inhabiting the deep‐subsurface sediment of the Mediterranean. Significance and Impact of the Study: The results suggest that the isolates obtained have potential applications in bioremediation strategies in deep‐sea environments and highlight the need to identify specific piezophilic hydrocarbon‐degrading bacteria (HCB) from these environments.  相似文献   

6.
Abstract

Tharae rate of methane released from the sediment‐water interface and from the surface of the water of Lake Wingra, Madison, Wisconsin, was measured during the summer months for 2 years. The amount of methane escaping the lake is estimated to be an important factor in the carbon budget of the lake. Most rapid methanogenesis was in shallow water (less than 1 m deep) and in the uppermost 5 cm of sediment. The numbers of methanogenic bacteria were estimated by a most probable number technique to vary from approximately 102 to 3 × 104 methanogens per gram of dry weight sediment during winter and summer, respectively.  相似文献   

7.
Oxidation of acetate in salt marsh sediment was inhibited by the addition of fluoroacetate, and also by the addition of molybdate, an inhibitor of sulfate-reducing bacteria. Molybdate had no effect upon the metabolism of acetate in a freshwater sediment in the absence of sulfate. The inhibitory effect of molybdate on acetate turnover in the marine sediment seemed to be because of its inhibiting sulfate-reducing bacteria which oxidized acetate to carbon dioxide. Sulfide was not recovered from sediment in the presence of molybdate added as an inhibitor of sulfate-reducing bacteria, but sulfide was recovered quantitatively even in the presence of molybdate by the addition of the strong reducing agent titanium chloride before acidification of the sediment. Reduction of sulfate to sulfide by the sulfate-reducing bacteria in the sediment was only partially inhibited by fluoroacetate, but completely inhibited by molybdate addition. This was interpreted as showing the presence of two functional groups of sulfate-reducing bacteria—one group oxidizing acetate, and another group probably oxidizing hydrogen.  相似文献   

8.
Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2. In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive the sulfur cycle. PSB and GSB fix carbon utilizing different enzymatic pathways and these fractionate C‐isotopes to different extents. Here, these differences in C‐isotope fractionation are used to constrain the relative input of various anoxygenic phototrophs to the bulk community C‐isotope signal in the chemocline. We sought to determine whether a distinct isotopic signature of GSB and PSB in the chemocline persists in the settling fraction and in the sediment. To answer these questions, we also sought investigated C‐isotope fractionation in the water column, settling material, and sediment of Lake Cadagno, compared these values to C‐isotope fractionation of isolated anoxygenic phototroph cultures, and took a mass balance approach to investigate relative contributions to the bulk fractionation signature. We found a large C‐isotope fractionation between dissolved inorganic carbon (DIC) and particulate organic carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C‐isotope fractionation, but the influence of GSB and PSB differed with season. Furthermore, the contribution of PSB and GSB to bulk C‐isotope fractionation in the chemocline could be traced in the settling fraction and in the sediment. Taken together with other studies, such as lipid biomarker analyzes and investigations of other stratified lakes, these results offer a firmer understanding of diagenetic influences on bacterial biomass.  相似文献   

9.
《Genomics》2021,113(4):2547-2560
Water quality parameter dynamics, gut, sediment and water bacteria communities were studied to understand the environmental influence on the gut microbial community of a new strain of Huanghe common carp. A total of 3,384,078 raw tags and 5105 OTUs were obtained for the gut, water and sediment bacteria. The water quality had a stronger influence on the water bacteria community than gut and sediment bacteria communities. The ambient water quality parameters also significantly influenced the water and sediment bacteria communities. Comparing the gut, sediment, and water microbial communities, a relationship was found among them. However, gut bacteria were more closely related to sediment bacterial communities than to water bacteria communities. The results showed that the top three bacterial taxa were identical in gut and sediment samples in the early days of rearing. Interestingly, bacterial communities in the carp gut, water, and sediment had different adaptabilities to variations in environmental factors.  相似文献   

10.
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments.  相似文献   

11.
12.
1. Surface sediment biofilm samples from 82 Pyrenean lakes were analysed for marker pigment composition using high performance liquid chromatography (HPLC). 2. Variability in the pigment composition among lakes was investigated by multivariate statistical analyses using a large data set of factors describing lake chemical, physical, morphological and catchment characteristics. 3. Due to the widely varying light penetration in the lakes, the most significant gradient of pigment composition extended from a benthic to a planktonic signal. The most important pigments in the gradient were alloxanthin (cryptophytes marker pigment, planktonic signal) and diatoxanthin (diatoms marker pigment, benthic signal). The molar ratio between these two marker pigments was positively correlated with lake depth. 4. Chlorophyll‐a preservation was found to be positively related to light penetration and the development of an autothrophic biofilm on the surface sediment and negatively related to decreasing pH and the percentage of alpine meadows in the lake catchments. 5. Zooplankton marker pigments in the surface sediment, including grazing by‐products (e.g. phaeophorbides) and carotenoids (astaxanthin, canthaxanthin, echinenone) incorporated into their tissues, were correlated with the areal abundance of zooplankton. 6. Marker pigments for photosynthetic bacteria, BChl‐e and okenone, were found mainly in relatively shallow lakes with large catchments that are forested, probably because of their higher loading of allochthonous organic matter. 7. The evaluation of a preservation index (Chl‐a expressed as a percentage of a‐phorbins) and the alloxanthin/diatoxanthin ratios throughout the sediment record of mountain lakes can provide evidence of historical changes in the relative importance of planktonic versus benthic primary production and might ultimately be interpreted in terms of climatic or environmental changes.  相似文献   

13.
周平  李杨  魏伟  刘梅  王丽  孙庆业 《生物学杂志》2013,(6):26-31,35
通过对铜陵地区不同河段的上覆水和沉积物的理化性质进行分析,结合聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)的方法,研究了铜陵不同河段中附生细菌的多样性及其与环境因子的关系。结果表明,8个河段中上覆水和沉积物的营养水平及重金属含量存在较大差异,不同河段附生细菌的多样性指数也存在差异。数据分析表明,铜陵河流中黄浒河附生细菌的多样性最高,顺安河下游和钟仓河附生细菌的多样性最低。这种差异主要与河段间上覆水和沉积物不同的营养水平、重金属含量水平等因素有关。附生细菌的香农-威纳多样性与上覆水中的氨态氮(NH3-N)、总氮(TN)、总磷(TP)、可溶性正磷酸盐(PO3-4-P)和高锰酸盐指数(COD Mn)呈显著或极显著负相关,与沉积物中镉(Cd)、铜(Cu)和锌(Zn)的含量具有显著或极显著正相关性。  相似文献   

14.
The emplacement of subaqueous gravity‐driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro‐organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate‐reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite‐induced changes to the geochemical environment. Species‐level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1‐cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low‐energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.  相似文献   

15.
1. We compared the extracellular enzyme activity (EEA) of sediment microbial assemblages with sediment and water chemistry, gradients in agricultural nutrient loading (derived from principal component analyses), atmospheric deposition and hydrological turnover time in coastal wetlands of the Laurentian Great Lakes. 2. There were distinct increases in nutrient concentrations in the water and in atmospheric N deposition along the gradient from Lake Superior to Lake Ontario, but few differences between lakes in sediment carbon (C), nitrogen (N) or phosphorus (P). Wetland water and sediment chemistry were correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 3. The N : P ratio of wetland waters and sediments indicated that these coastal wetlands were N‐limited. Nutrient stoichiometry was correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 4. Extracellular enzyme activity was correlated with wetland sediment and water chemistry and stoichiometry, atmospheric N deposition, the agricultural stress gradient and the hydrological turnover time. The ratios of glycosidases to peptidases and phosphatases yielded estimates of nutrient limitation that agreed with those based solely on nutrient chemistry. 5. This study, the first to link microbial enzyme activities to regional‐scale anthropogenic stressors, suggests that quantities and ratios of microbial enzymes are directly related to the concentrations and ratios of limiting nutrients, and may be sensitive indicators of nutrient dynamics in wetland ecosystems, but further work is needed to elucidate these relationships.  相似文献   

16.
Aggregates and zooplankton may provide refuge for aquatic bacteria against external hazards. The ability of attached bacteria to survive and recover from stressors commonly used for water treatment was tested in the laboratory. Without zooplankton or aggregates, both UV and ozone significantly reduced abundance of free‐living bacteria in both freshwater and marine medium. The presence of zooplankton carcasses and aggregates, however, allowed some of the attached bacteria to survive and recover quickly within 3 days. Heat exposure was the least effective as both free‐living and attached bacteria were able to recover quickly. Selective survival of bacterial phylotypes led to large changes in bacterial community composition after stress exposures, and some of the bacteria that recovered belonged to groups with known pathogens. This study demonstrates that zooplankton and aggregates protected various aquatic bacteria from external stressors, and organic remains generated from zooplankton and aggregates after stress exposure even enabled the surviving bacteria to quickly regrow and subsequently be released into the surrounding water. Hence, water disinfection treatments that overlooked the potential persistence of bacteria associated with organisms and aggregates may not be effective in preventing the spread of undesirable bacteria.  相似文献   

17.
Fungi are important decomposers of leaf litter in streams and may have knock‐on effects on other microbes and carbon cycling. To elucidate such potential effects, we designed an experiment in outdoor experimental channels simulating sand‐bottom streams in an early‐successional state. We hypothesized that the presence of fungi would enhance overall microbial activity, accompanied by shifts in the microbial communities associated not only with leaf litter but also with sediments. Fifteen experimental channels received sterile sandy sediment, minimal amounts of leaf litter, and one of four inocula containing either (i) fungi and bacteria, or (ii) bacteria only, or (iii) no microorganisms, or (iv) killed microorganisms. Subsequently, we let water from an early‐successional catchment circulate through the channels for 5 weeks. Whole‐stream metabolism and microbial respiration associated with leaf litter were higher in the channels inoculated with fungi, reflecting higher fungal activity on leaves. Bacterial communities on leaves were also significantly affected. Similarly, increases in net primary production, sediment microbial respiration and chlorophyll a content on the sediment surface were greatest in the channels receiving a fungal inoculum. These results point to a major role of fungal communities in stream ecosystems beyond the well‐established direct involvement in leaf litter decomposition.  相似文献   

18.
The processes that lead to the precipitation of authigenic calcium phosphate minerals in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate‐accumulating bacteria. These bacteria are believed to concentrate phosphate in sediment pore waters, creating supersaturated conditions with respect to apatite precursors. However, the relationship between microbes and phosphorite formation is not fully resolved. To further study this association, we examined microbial community data generated from two sources: sediment cores recovered from the shelf of the Benguela upwelling region where phosphorites are currently forming, and DNA preserved within phosphoclasts recovered from a phosphorite deposit along the Benguela shelf. iTag and clone library sequencing of the 16S rRNA gene showed that many of our sediment‐hosted communities shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfate‐reducing bacteria and sulfur‐oxidizing bacteria were particularly abundant in our datasets, as were phylotypes that are known to carry out nitrification and the anaerobic oxidation of ammonium. The DNA extracted from phosphoclasts contained the signature of a distinct microbial community from those observed in the modern sediments. While some aspects of the modern and phosphoclast communities were similar, we observed both an enrichment of certain common microbial classes found in the modern phosphogenic sediments and a relative depletion of others. The phosphoclast‐associated DNA could represent a relict signature of one or more microbial assemblages that were present when the apatite or its precursors precipitated. While these taxa may or may not have contributed to the precipitation of the apatite that now hosts their genetic remains, several groups represented in the phosphoclast extract dataset have the genetic potential to metabolize polyphosphate, and perhaps modulate phosphate concentrations in pore waters where carbonate fluorapatite (or its precursors) are known to be precipitating.  相似文献   

19.
1. Sediments from hypereutrophic Lake Vallentunasjön were enriched with Microcystis colonies from the lake water, thereby simulating the conditions after the autumn sedimentation. Release of phosphorus to the overlying lake water was followed during 2–3 weeks in the laboratory. X-ray microanalysis of individual Microcystis and bacterial cells, and chemical phosphorus fractionation, were used to assess the phosphorus pool size in different fractions of the sediment. 2. Benthic Microcystis colonies, most of these having survived within the sediment for 1 year or more, were less susceptible to decomposition, and the specific growth rate of bacteria in their mucilage was lower than for other sediment bacteria. 3. Pelagic Microcystis colonies from late August were resistant to decomposition, when placed on the sediments. When Microcystis colonies from a declining pelagic population in October were added to the sediments, however, a substantial fraction of these colonies was decomposed. The specific growth rate of mucilage bacteria was five times higher than for other sediment bacteria. 4. Release of molybdate-reactive phosphorus to the overlying lake water was larger from sediment cores enriched with Microcystis colonies than from control cores. Chemical phosphorus fractionation showed a decrease in organic-bound phosphorus (residual P). 5. X-ray microanalysis showed that the phosphorus bound in Microcystis cells decreased by -0.300 mg g?1 DW in the October experiment, due both to a decrease in biomass (i.e. mineralization) and to a decrease in phosphorus content in the remaining cells. Heterotrophic bacteria increased their cellular concentration of phosphorus. The net release of phosphorus from the Microcystis and bacterial pools corresponded to 74% of the decrease of organic-bound phosphorus in the chemical phosphorus fractionation, and to 65% of the decrease of total phosphorus in the upper 0–1 cm of the sediment. 6. Benthic bacteria and cyanobacteria may thus contribute significantly to changes in phosphorus content and turnover of the sediment by changes in their biomass, turnover rate and cellular phosphorus content.  相似文献   

20.
Abstract The fluctuations of the total microbial abundance, the culturable heterotrophic bacterial population, and the composition of heterotrophic bacteria were investigated in relation to environmental parameters in a shallow, marine hydrothermal vent off the Island of Vulcano (Eolian Islands, Italy). Standing stock dynamics were studied by measuring the total population of picoplankton by direct count and the population of viable heterotrophic bacteria in water and sediment samples collected monthly. The environmental factors most strongly linked to the total microbial abundance and heterotrophic bacterial populations were pH and H2S content in water and C/N ratio in sediment samples. The pattern of variation of microbial populations associated with water was different from those associated with sediment. Assessment of the qualitative composition of aerobic heterotrophic bacterial communities was based on 30 morphological and biochemical characteristics for each strain. Numerical analysis was used for an initial survey of the similarity among the isolates. The data were successively used to determine the structure and the metabolic potential of water and sediment bacteria. Metabolic properties varied between water- and sediment-isolated bacteria. Bacteria from water were structurally more diverse, and active in the use of carbohydrates, than those from sediment. Moreover, most of the sediment bacteria were able to grow at a high temperature (60 and 70°C). The fluctuations of bacterial characteristics in relation to environmental parameters present an evident temporal variation in water, but not in the sediment habitat. Received: 13 January 1997; Accepted: 7 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号