首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.  相似文献   

2.
Female choice plays a critical role in the evolution of male acoustic displays. Yet there is limited information on the neurophysiological basis of female songbirds’ auditory recognition systems. To understand the neural mechanisms of how non-singing female songbirds perceive behaviorally relevant vocalizations, we recorded responses of single neurons to acoustic stimuli in two auditory forebrain regions, the caudal lateral mesopallium (CLM) and Field L, in anesthetized adult female zebra finches (Taeniopygia guttata). Using various metrics of response selectivity, we found consistently higher response strengths for unfamiliar conspecific songs compared to tone pips and white noise in Field L but not in CLM. We also found that neurons in the left auditory forebrain had lower response strengths to synthetics sounds, leading to overall higher neural selectivity for song in neurons of the left hemisphere. This laterality effect is consistent with previously published behavioral data in zebra finches. Overall, our results from Field L are in parallel and from CLM are in contrast with the patterns of response selectivity reported for conspecific songs over synthetic sounds in male zebra finches, suggesting some degree of sexual dimorphism of auditory perception mechanisms in songbirds.  相似文献   

3.
Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene.  相似文献   

4.
Black‐capped chickadees (Poecile atricapillus) and mountain chickadees (P. gambeli) have a similar vocal repertoire and share many other life history traits; yet, black‐capped chickadees are socially dominant to mountain chickadees where populations overlap. Previous research suggested that in contact zones, both species respond weakly to heterospecific songs during the breeding season, and have suggested minimal interspecific competition. However, both black‐capped and mountain chickadees discriminate between conspecific and heterospecific chick‐a‐dee calls, suggesting attention is paid to interspecific signals. We compared the responses of both black‐capped and mountain chickadees to conspecific and heterospecific chick‐a‐dee calls during the winter, when both species compete for the same food resources. We conducted an aviary playback experiment exposing both species to playback composed of heterospecific and conspecific chick‐a‐dee calls, which had been recorded in the context of finding food sources. Responses from the tested birds were measured by recording vocalizations and behaviour. Black‐capped chickadees responded significantly more to conspecific than to heterospecific stimuli, whereas the subordinate mountain chickadees responded to both mountain and black‐capped chickadee calls. Based upon the reactions to playbacks, our results suggest these two closely related species may differ in their perception of the relative threat associated with intra‐ versus interspecific competitors.  相似文献   

5.
We investigated patterns of mating call preference and mating call recognition by examining phonotaxis of female túngara frogs, Physalaemus pustulosus, in response to conspecific and heterospecific calls. There are four results: females always prefer conspecific calls; most heterospecific calls do not elicit phonotaxis; some heterospecific calls do elicit phonotaxis and thus are effective mate recognition signals; and females prefer conspecific calls to which a component of a heterospecific call has been added to a normal conspecific call. We use these data to illustrate how concepts of species recognition and sexual selection can be understood in a unitary framework by comparing the distribution of signal traits to female preference functions.  相似文献   

6.
The production of vocalizations in nonhuman primates is predominantly innate, whereas learning influences the usage and comprehension of vocalizations. In this study, I examined the development of alarm call recognition in free-ranging infant Verreaux's sifakas. Specifically, I investigated their ability to recognize conspecific alarm calls as well as those of sympatric redfronted lemurs (Eulemur fulvus rufus) in Kirindy forest, western Madagascar. Both species have functionally referential alarm calls for aerial predators and give general alarm calls for both aerial and general predators and also other kinds of threats, such as intergroup encounters with conspecifics. I conducted playback experiments with members of two birth cohorts (nine and ten individuals) to determine the age at which infant Verreaux's sifakas discriminate between conspecific alarm calls, heterospecific alarm calls, and non-alarm vocalizations (parrot song). Most 3-4 months old infants fled toward adults after hearing any playback stimuli, whereas 4-5-month-old infants did so only after presentation of alarm calls. Moreover, all infants of these age classes showed a longer latency to flee after the parrot song indicating their emerging ability to discriminate between alarm calls and non-alarm stimuli. At an age of about 6 months, infants switched from fleeing toward adults to performing adult-like escape responses after presentation of conspecific and heterospecific alarm calls. Thus, the ability to discriminate between alarm from non-alarm stimuli precedes the appearance of adult-like responses. The transition to adult-like escape behavior was coincident with the physical independence of infants from their mothers.  相似文献   

7.
In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross‐tutored by Bengalese finches were studied. Single‐unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information (MI), response reliability, mean spike rate, fluctuations in time‐varying spike rate, distributions of time‐varying spike rates, and neural discrimination of individual songs. MI quantifies a response's capacity to encode information about a stimulus. In midbrain and forebrain neurons, MI was significantly higher in normal zebra finch neurons than in Bengalese finch and cross‐tutored zebra finch neurons, but not between Bengalese finch and cross‐tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. MI did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and MI were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 235–252, 2010.  相似文献   

8.
Various mechanisms have been proposed as the neural basis for pulse-rate recognition in insects and anurans, including models employing high- and low-pass filters, autocorrelation, and neural resonance. We used the katydid Tettigonia cantans to test these models by measuring female responsiveness on a walking compensator to stimuli varying in temporal pattern. Each model predicts secondary responses to certain stimuli other than the standard conspecific pulse rate. Females responded strongly to stimuli with a pulse-rate equal to half the standard rate, but not to stimuli with double the standard rate. When every second pulse or interval was varied in length, females responded only when the resulting stimuli were rhythmic with respect to the period of the standard signal. These results provide evidence rejecting the use of either high-/low-pass filter networks or autocorrelation mechanisms. We suggest that rate recognition in this species relies on the resonant properties of neurons involved in signal recognition. According to this model, signals with a pulse rate equal to the resonant frequency of the neurons stimulate the female to respond. The results are discussed with regard to both neural and evolutionary implications of resonance as a mechanism for signal recognition. In memory of Dagmar von Helversen (1944–2003)  相似文献   

9.
Receiver sensory abilities can be influenced by a number of factors, including habitat, phylogeny and the selective pressure to acquire information about conspecifics or heterospecifics. It has been hypothesized that brood-parasitic brown-headed cowbird (Molothrus ater) females may locate or determine the quality of potential hosts by eavesdropping on their sexual signals. This is expected to produce different sex-specific pressures on the auditory system to detect conspecific and heterospecific acoustic signals. Here, we examined auditory filter shape and efficiency, which influence the ability to resolve spectral and temporal information, in males and females at center frequencies of 2, 3 and 4 kHz. We found that overall, cowbirds had relatively wide filters (lsmean ± SE: 619.8 ± 41.6 Hz). Moreover, females had narrower filters (females: 491.4 ± 66.8, males: 713.8 ± 67.3 Hz) and greater filter efficiency (females: 59.0 ± 2.0, males: 69.8 ± 1.9 dB) than males. Our results suggest that the filters of female cowbirds may allow them to extract spectral information from heterospecific vocalizations. The broader auditory filters of males may reflect limited spectral energy in conspecific vocalizations in this frequency range, and hence, weaker selection for high resolution of frequency in the range of 2–4 kHz.  相似文献   

10.
Where orangethroat darters (Etheostoma: Ceasia) and rainbow darters (Etheostoma caeruleum) co-occur, males prefer conspecific over heterospecific females. The cues males use to identify conspecific females remain unclear. We conducted behavioral trials to ask whether chemical cues function in conspecific recognition. We found that males from three orangethroat darter species preferentially associate with female scent over a control. Our results support the use of olfaction in conspecific identification in the orangethroat clade and contribute to our understanding of signals that may facilitate species recognition and underlie the evolution of behavioral isolation.  相似文献   

11.
A password for species recognition in a brood-parasitic bird   总被引:6,自引:0,他引:6  
Recognition of conspecifics is an essential precursor of sexual reproduction. Most mammals and birds learn salient features of their parents or siblings early in ontogeny and later recognize individuals whose phenotypes match the mental image (template) of relatives closely enough as conspecifics. However, the young of brood parasites are reared among heterospecifics, so social learning will yield inappropriate species recognition templates. Initially, it was inferred that conspecific recognition in brood parasites depended on genetically determined templates. More recently it was demonstrated that learning plays a critical role in the development of parasites' social preferences. Here we propose a mechanism that accommodates the interaction of learned and genetic components of recognition. We suggest that conspecific recognition is initiated when a young parasite encounters some unique species-specific signal or "password" (e.g. a vocalization, behaviour or other characteristic) that triggers learning of additional aspects of the password-giver's phenotype. We examined the possibility that nestlings of the obligately brood-parasitic brown-headed cowbird (Molothrus ater) could use a species-specific vocalization, the "chatter", as a password. We found that six-day-old nestlings responded (begged) significantly more frequently to playbacks of chatters than to other avian sounds and that two-month-old fledglings approached playbacks of chatters more quickly than vocalizations of heterospecifics. Free-living cowbird fledglings and adults also approached playbacks of chatters more often than control sounds. Passwords may be involved in the ontogeny of species recognition in brood parasites generally.  相似文献   

12.
The fish auditory system encodes important acoustic stimuli used in social communication, but few studies have examined response properties of central auditory neurons to natural signals. We determined the features and responses of single hindbrain and midbrain auditory neurons to tone bursts and playbacks of conspecific sounds in the soniferous damselfish, Abudefduf abdominalis. Most auditory neurons were either silent or had slow irregular resting discharge rates <20 spikes s−1. Average best frequency for neurons to tone stimuli was ~130 Hz but ranged from 80 to 400 Hz with strong phase-locking. This low-frequency sensitivity matches the frequency band of natural sounds. Auditory neurons were also modulated by playbacks of conspecific sounds with thresholds similar to 100 Hz tones, but these thresholds were lower than that of tones at other test frequencies. Thresholds of neurons to natural sounds were lower in the midbrain than the hindbrain. This is the first study to compare response properties of auditory neurons to both simple tones and complex stimuli in the brain of a recently derived soniferous perciform that lacks accessory auditory structures. These data demonstrate that the auditory fish brain is most sensitive to the frequency and temporal components of natural pulsed sounds that provide important signals for conspecific communication.  相似文献   

13.
Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRFvoc) and DMR-derived STRFs (STRFdmr), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRFvoc predicted neural responses to vocalizations more accurately than STRFdmr predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRFvoc and STRFdmr. Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.  相似文献   

14.
The matched filter hypothesis proposes that the tuning of females' auditory sensitivity matches the spectral energy distribution of males' signals. Such correspondence is expected to arise over evolutionary time, as it promotes conspecific information transfer and reduces interference from other sound sources. Our main objective was to determine the correspondence between the acoustic sensitivity of female frogs of Eupsophus roseus and the spectral characteristics of advertisement vocalizations produced by conspecific males. We also aimed to determine how auditory sensitivity is related to the characteristics of background noise. We analysed data on the auditory sensitivity of E. roseus females, and recordings of conspecific male vocalizations and of the acoustic environment during the breeding period of this species. Our results indicate a concordance between the auditory sensitivity of females and call spectra that would provide an appropriate detection of these signals. In addition, this matching is large relative to the correspondence between auditory sensitivity with the spectra of the abiotic and biotic background noise, with the last component being associated with calls of the related species Eupsophus vertebralis. This may be an adaptation of receivers confronting sound interference, which improves the capability of E. roseus to communicate sexually by means of acoustic signals. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 814–827.  相似文献   

15.
Many social animals use long-distance signals to attract mates and defend territories. They face the twin challenges of discriminating between species to identify conspecific mates, and between individuals to recognize collaborators and competitors. It is therefore often assumed that long-distance signals are under strong selection for species-specificity and individual distinctiveness, and that this will drive character displacement when closely related species meet, particularly in noisy environments. However, the occurrence of signal stereotypy and convergence in rainforest species seems to contradict these ideas, and raises the question of whether receivers in these systems can recognize species or individuals by long-distance signals alone. Here, we test for acoustically mediated recognition in two sympatric antbird species that are known to have convergent songs. We show that male songs are stereotyped yet individually distinctive, and we use playback experiments to demonstrate that females can discriminate not only between conspecific and heterospecific males, but between mates and strangers. These findings provide clear evidence that stereotypy and convergence in male signals can be accommodated by fine tuning of perceptual abilities in female receivers, suggesting that the evolutionary forces driving divergent character displacement in animal signals are weaker than is typically assumed.  相似文献   

16.
Animals often gather information from other species by eavesdropping on signals intended for others. We review the extent, benefits, mechanisms, and ecological and evolutionary consequences of eavesdropping on other species' alarm calls. Eavesdropping has been shown experimentally in about 70 vertebrate species, and can entail closely or distantly related species. The benefits of eavesdropping include prompting immediate anti‐predator responses, indirect enhancement of foraging or changed habitat use, and learning about predators. Eavesdropping on heterospecifics can provide more eyes looking for danger, complementary information to that from conspecifics, and potentially information at reduced cost. The response to heterospecific calls can be unlearned or learned. Unlearned responses occur when heterospecific calls have acoustic features similar to that used to recognize conspecific calls, or acoustic properties such as harsh sounds that prompt attention and may allow recognition or facilitate learning. Learning to recognize heterospecific alarm calls is probably essential to allow recognition of the diversity of alarm calls, but the evidence is largely indirect. The value of eavesdropping on different species is affected by problems of signal interception and the relevance of heterospecific alarm calls to the listener. These constraints on eavesdropping will affect how information flows among species and thus affect community function. Some species are ‘keystone’ information producers, while others largely seek information, and these differences probably affect the formation and function of mixed‐species groups. Eavesdroppers might also integrate alarm calls from multiple species to extract relevant and reliable information. Eavesdropping appears to set the stage for the evolution of interspecific deception and communication, and potentially affects communication within species. Overall, we now know that eavesdropping on heterospecific alarm calls is an important source of information for many species across the globe, and there are ample opportunities for research on mechanisms, fitness consequences and implications for community function and signalling evolution.  相似文献   

17.
We examined innate responses to conspecific and heterospecific alarm cues in a small cyprinid minnow, the Eastern Cape redfin Pseudobarbus afer. We found that redfins respond to conspecific skin extract, which contains alarm chemicals, and showed that their preferred response is to hide in refugia. Redfins also respond to skin extract from an allopatric, distantly related minnow species, the chubbyhead barb Enteromius anoplus indicating that neither sympatry nor close phylogenetic relationships are necessary for recognition of heterospecific alarm cues. Although both conspecific and heterospecific alarm cues induced similar responses, the response to heterospecific cues was less intense. This may be explained by a trade-off between selection to maximise threat recognition and selection to avoid the costs of responding to irrelevant cues, or by differences in chemical structures of alarm cues between species. These findings have implications for the conservation of this Endangered fish species and for freshwater fishes throughout Africa.  相似文献   

18.
Recognition of heterospecific (interspecific) alarm calls has been demonstrated in birds and mammals, but bird–mammal interactions have rarely been studied. Here, I tested the hypothesis that red squirrels (Sciurus vulgaris) are able to recognize alarm calls of a sympatric bird species, the Eurasian jay (Garrulus glandarius), and respond adequately with anti‐predator behaviour. Both animals are preyed upon by the same predators. To test whether squirrels would react to heterospecific alarm calls, I recorded squirrels behaviour during playbacks of jay alarm calls, control playbacks (territorial songs of sympatric songbirds) and during silence. Differences between the control treatment (songbirds) and silence were not significant. Seven of the 13 squirrels responded with escape after broadcasting alarm calls of jays. Further, squirrels spent less time in the patch, expressed a higher vigilance, and showed more rapid head and body movements. These results suggest that squirrels recognize heterospecific alarm vocalizations of jays and discriminate them from equally loud non‐threatening sounds.  相似文献   

19.
Mate recognition is critical to the maintenance of reproductiveisolation, and animals use an array of sensory modalities toidentify conspecific mates. In particular, olfactory informationcan be an important component of mate recognition systems. Weinvestigated whether odor is involved in mate recognition ina sympatric benthic and limnetic species pair of three-spinedsticklebacks (Gasterosteus spp.), for which visual cues andsignals are known to play a role in premating isolation. Weallowed gravid females of each species to choose between waterscented by a heterospecific male and water scented by a conspecificmale. Benthic females preferred the conspecific male stimuluswater significantly more often than the heterospecific malestimulus water, whereas limnetic females showed no preference.These species thus differ in their odor and may also differin their use of olfaction to recognize conspecific mates. Thesedifferences are likely a consequence of adaptation to disparateenvironments. Differences in diet, foraging mode, habitat, andparasite exposure may explain our finding that odor might bean asymmetric isolating mechanism in these sympatric sticklebackspecies.  相似文献   

20.
Closely related species of lycaenid butterflies are determinable, in part, by subtle differences in wing pattern. We found that female wing patterns can act as an effective mate‐recognition signal in some populations of two recently diverged species. In field experiments, we observed that males from a Lycaeides idas population and an alpine population of L. melissa preferentially initiate courtship with conspecific females. A morphometric study indicated that at least two wing pattern elements were important for distinguishing the two species: hindwing spots and orange crescent‐shaped pattern elements called aurorae. We deceived male L. idas into initiating courtship with computer generated paper models of heterospecific females when these pattern elements were manipulated, indicating that the wing pattern elements that define the diversity of this group can be effective mate recognition signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号