共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the hallmarks of the parasitic phylum of Apicomplexa is the presence of highly specialised, apical secretory organelles, called the micronemes and rhoptries that play critical roles in ensuring survival and dissemination. Upon exocytosis, the micronemes release adhesin complexes, perforins, and proteases that are crucially implicated in egress from infected cells, gliding motility, migration across biological barriers, and host cell invasion. Recent studies on Toxoplasma gondii and Plasmodium species have shed more light on the signalling events and the machinery that trigger microneme secretion. Intracellular cyclic nucleotides, calcium level, and phosphatidic acid act as key mediators of microneme exocytosis, and several downstream effectors have been identified. Here, we review the key steps of microneme biogenesis and exocytosis, summarising the still fractal knowledge at the molecular level regarding the fusion event with the parasite plasma membrane. 相似文献
2.
Gendrin C Mercier C Braun L Musset K Dubremetz JF Cesbron-Delauw MF 《Traffic (Copenhagen, Denmark)》2008,9(10):1665-1680
A critical step in infection by the apicomplexan parasite Toxoplasma gondii is the formation of a membrane-bound compartment within which the parasite proliferates. This process relies on a set of secretory organelles that discharge their contents into the host cell upon invasion. Among these organelles, the dense granules are specialized in the export of transmembrane (TM) GRA proteins, which are major components of the mature parasitophorous vacuole (PV) membrane. How eukaryotic pathogens export and sort membrane-bound proteins destined for the host cell is still poorly understood at the mechanistic level. In this study, we show that soluble trafficking of the PV-targeted GRA5 TM protein is parasite specific: when expressed in mammalian cells, GRA5 is targeted to the plasma membrane and behaves as an integral membrane protein with a type I toplogy. We also demonstrate the dual role of the GRA5 N-terminal ectodomain, which is sufficient to prevent membrane integration within the parasite and is essential for both sorting and post-secretory membrane insertion into the vacuolar membrane. These results contrast with the general rule that states that information contained within the cytoplasmic tail and/or the TM domain of integral membrane proteins dictates their cellular localization. They also highlight the diversity of sorting mechanisms that leads to the specialization of secretory processes uniquely adapted to intracellular parasitism. 相似文献
3.
A novel dense granule protein,GRA41, regulates timing of egress and calcium sensitivity in Toxoplasma gondii 下载免费PDF全文
Kaice A. LaFavers Karla M. Márquez‐Nogueras Isabelle Coppens Silvia N. J. Moreno Gustavo Arrizabalaga 《Cellular microbiology》2017,19(9)
Toxoplasma gondii is an obligate intracellular apicomplexan parasite with high seroprevalence in humans. Repeated lytic cycles of invasion, replication, and egress drive both the propagation and the virulence of this parasite. Key steps in this cycle, including invasion and egress, depend on tightly regulated calcium fluxes and, although many of the calcium‐dependent effectors have been identified, the factors that detect and regulate the calcium fluxes are mostly unknown. To address this knowledge gap, we used a forward genetic approach to isolate mutants resistant to extracellular exposure to the calcium ionophore A23187. Through whole genome sequencing and complementation, we have determined that a nonsense mutation in a previously uncharacterised protein is responsible for the ionophore resistance of one of the mutants. The complete loss of this protein recapitulates the resistance phenotype and importantly shows defects in calcium regulation and in the timing of egress. The affected protein, GRA41, localises to the dense granules and is secreted into the parasitophorous vacuole where it associates with the tubulovesicular network. Our findings support a connection between the tubulovesicular network and ion homeostasis within the parasite, and thus a novel role for the vacuole of this important pathogen. 相似文献
4.
Saito T Maeda T Nakazawa M Takeuchi T Nozaki T Asai T 《International journal for parasitology》2002,32(8):961-967
We have cloned the hexokinase [E.C. 2.7.1.1] gene of Toxoplasma gondii tachyzoite and obtained an active recombinant enzyme with a calculated molecular mass of 51,465Da and an isoelectric point of 5.82. Southern blot analysis indicated that the hexokinase gene existed as a single copy in the tachyzoites of T. gondii. The sequence of T. gondii hexokinase exhibited the highest identity (44%) to that of Plasmodium falciparum hexokinase and lower identity of less than 35% to those of hexokinases from other organisms. The specific activity of the homogeneously purified recombinant enzyme was 4.04 micromol/mg protein/min at 37 degrees C under optimal conditions. The enzyme could use glucose, fructose, and mannose as substrates, though it preferred glucose. Adenosine triphosphate was exclusively the most effective phosphorus donor, and pyrophosphate did not serve as a substrate. K(m) values for glucose and adenosine triphosphate were 8.0+/-0.8 microM and 1.05+/-0.25mM, respectively. No allosteric effect of substrates was observed, and the products, glucose 6-phosphate and adenosine diphosphate, had no inhibitory effect on T. gondii hexokinase activity. Other phosphorylated hexoses, fructose 6-phosphate, trehalose 6-phosphate which is an inhibitor of yeast hexokinase, and pyrophosphate, also did not affect T. gondii hexokinase activity. Native hexokinase activity was recovered in both the cytosol and membrane fractions of the whole lysate of T. gondii tachyzoites. This result suggests that T. gondii hexokinase weakly associates with the membrane or particulate fraction of the tachyzoite cell. 相似文献
5.
ABSTRACT. How apicomplexan parasites regulate their gene expression is poorly understood. The complex life cycle of these parasites implies tight control of gene expression to orchestrate the appropriate expression pattern at the right moment. Recently, several studies have demonstrated the role of epigenetic mechanisms for control of coordinated expression of genes. In this review, we discuss the contribution of epigenomics to the understanding of gene regulation in Toxoplasma gondii. Studying the distribution of modified histones on the genome links chromatin modifications to gene expression or gene repression. In particular, coincident trimethylated lysine 4 on histone H3 (H3K4me3), acetylated lysine 9 on histone H3 (H3K9ac), and acetylated histone H4 (H4ac) mark promoters of actively transcribed genes. However, the presence of these modified histones at some non‐expressed genes and other histone modifications at only a subset of active promoters implies the presence of other layers of regulation of chromatin structure in T. gondii. Epigenomics analysis provides a powerful tool to characterize the activation state of genomic loci of T. gondii and possibly of other Apicomplexa including Plasmodium or Cryptosporidium. Further, integration of epigenetic data with expression data and other genome‐wide datasets facilitates refinement of genome annotation based upon experimental data. 相似文献
6.
《Autophagy》2013,9(3):435-437
Toxoplasma gondii belongs to the phylum Apicomplexa, a diverse group of early branching unicellular eukaryotes related to dinoflagellates and ciliates. Like several other Apicomplexa such as Plasmodium (the causative agent of malaria), T. gondii is a human pathogen responsible for a potentially lethal disease called toxoplasmosis. Most Apicomplexa have complex life cycles, involving intermediate hosts and vectors, which include obligatory intracellular developmental stages. In the case of malaria and toxoplasmosis, it is that replicative process, leading to the ultimate lysis of the host cell, which is causing the symptoms of the disease. For Toxoplasma, the invasive and fast-replicating form of the parasite is called the tachyzoite. While autophagy has been a fast-growing field of research in recent years, not much was known about the relevance of this catabolic process in medically important apicomplexan parasites. Vesicles resembling autophagosomes had been described in drug-treated Plasmodium parasites in the early 1970s and a potential role for autophagy in organelle recycling during differentiation between Plasmodium life stages has also been recently described. Interestingly, recent database searches have identified putative orthologs of the core machinery responsible for the formation of autophagosomes in several protists, including Toxoplasma. In spite of an apparently reduced machinery (only about one-third of the yeast ATG genes appear to be conserved), T. gondii seemed thus able to perform macroautophagy, but the cellular functions of the pathway for this parasite remained to be demonstrated. 相似文献
7.
The accurate targeting of proteins to their final destination is an essential process in all living cells. Apicomplexans are obligate intracellular protozoan parasites that possess a compartmental organization similar to that of free-living eukaryotes but can be viewed as professional secretory cells. Establishment of parasitism involves the sequential secretion from highly specialized secretory organelles, including micronemes, rhoptries and dense granules. Additionally, apicomplexans harbor a tubular mitochondrion, a nonphotosynthetic plastid organelle termed the apicoplast, acidocalcisomes and an elaborated inner membrane complex composed of flattened membrane cisternae that are derived from the secretory pathway. Given the multitude of destinations both inside and outside the parasite, the endoplasmic reticulum/Golgi of the apicomplexans constitutes one of the most busy roads intersections in eukaryotic traffic. 相似文献
8.
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins. 相似文献
9.
Toxoplasma gondii: the model apicomplexan 总被引:6,自引:0,他引:6
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites. 相似文献
10.
Rajshekhar Y. Gaji Amanda K. Sharp Anne M. Brown 《International journal for parasitology》2021,51(6):415-429
Toxoplasma gondii is an obligatory intracellular pathogen that causes life threatening illness in immunodeficient individuals, miscarriage in pregnant woman, and blindness in newborn children. Similar to any other eukaryotic cell, protein kinases play critical and essential roles in the Toxoplasma life cycle. Accordingly, many studies have focused on identifying and defining the mechanism of function of these signalling proteins with a long-term goal to develop anti-Toxoplasma therapeutics. In this review, we briefly discuss classification and key components of the catalytic domain which are critical for functioning of kinases, with a focus on domains, families, and groups of kinases within Toxoplasma. More importantly, this article provides a comprehensive, current overview of research on kinase groups in Toxoplasma including the established eukaryotic AGC, CAMK, CK1, CMGC, STE, TKL families and the apicomplexan-specific FIKK, ROPK and WNG family of kinases. This work provides an overview and discusses current knowledge on Toxoplasma kinases including their localization, function, signalling network and role in acute and chronic pathogenesis, with a view towards the future in probing kinases as viable drug targets. 相似文献
11.
Like other apicomplexan parasites, Toxoplasma gondii actively invades host cells using a combination of secretory proteins and an acto-myosin motor system. Micronemes are the first set of proteins secreted during invasion that play an essential role in host cell entry. Many microneme proteins (MICs) function in protein complexes, and each complex contains at least one protein that displays a cleavable propeptide. Although MIC propeptides have been implicated in forward targeting to micronemes, the specific amino acids involved have not been identified. It was also not known if the propeptide has a general function in MICs trafficking in T. gondii and other apicomplexans. Here we show that propeptide domains are extensively interchangeable between T. gondii MICs and also with that of Eimeria tenella MIC5 (EtMIC5), suggesting a common mechanism of function. We also performed N-terminal deletion and mutational analysis of M2AP and MIC5 propeptides to show that a valine at position +3 (relative to signal peptidase cleavage) of proM2AP and a leucine at position +1 of proMIC5 are crucial for targeting to micronemes. Valine and leucine are closely related amino acids with similar side chains, implying a similar mode of function, a notion that was confirmed by correct trafficking of TgM2AP-V/L and TgMIC5-L/V substitution mutants. Propeptides of AMA1, MIC3 and EtMIC5 have valine or leucine at or near the N-termini and mutagenesis of these conserved residues validated their role in microneme trafficking. Collectively, our findings suggest that discrete, aliphatic residues at the extreme N-termini of proMICs facilitate trafficking to the micronemes. 相似文献
12.
Lucas Borges-Pereira Alexandre Budu Ciara A. McKnight Christina A. Moore Stephen A. Vella Miryam A. Hortua Triana Jing Liu Celia R. S. Garcia Douglas A. Pace Silvia N. J. Moreno 《The Journal of biological chemistry》2015,290(45):26914-26926
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait. 相似文献
13.
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates. 相似文献
14.
Winiecka-Krusnell J Dellacasa-Lindberg I Dubey JP Barragan A 《Experimental parasitology》2009,121(2):124-131
Waterborne transmission of the oocyst stage of Toxoplasma gondii can cause outbreaks of clinical toxoplasmosis in humans and infection of marine mammals. In water-related environments and soil, free-living amoebae are considered potential carriers of various pathogens, but knowledge on interactions with parasitic protozoa remains elusive. In the present study, we assessed whether the free-living Acanthamoebacastellanii, due to its phagocytic activity, can interact with T. gondii oocysts. We report that amoebae can internalize T. gondii oocysts by active uptake. Intracellular oocysts in amoebae rarely underwent phagocytic lysis, retained viability and established infection in mice. Interaction of T. gondii with amoebae did not reduce the infectivity and pathogenicity of oocysts even after prolonged co-cultivation. Our results show that uptake of oocysts by A. castellanii does not restrain the transmission of T. gondii in a murine infection model. 相似文献
15.
Pryscilla Fanini Wowk Maria Luisa Zardo Halisson Tesseroli Miot Samuel Goldenberg Paulo Costa Carvalho Patricia Alves Mörking 《Proteomics》2017,17(15-16)
Toxoplasma gondii infects a wide range of hosts worldwide, including humans and domesticated animals causing toxoplasmosis disease. Recently, exosomes, small extracellular vesicles (EV) that contain nucleic acids, proteins, and lipids derived from their original cells were linked with disease protection. The effect of EVs derived from T. gondii on the immune response and its relevance in a physiological context is unknown. Here we disclose the first proteomic profiling of T. gondii EVs compared to EVs isolated from a human foreskin fibroblast infected cell line cultured in a vesicle‐free medium. Our results reveal a broad range of canonical exosomes proteins. Data are available via ProteomeXchange with the identifier PXD004895. 相似文献
16.
17.
Host cell surface sialic acid residues are involved on the process of penetration of Toxoplasma gondii into mammalian cells 总被引:1,自引:0,他引:1
Tachyzoites of Toxoplasma gondii are able to infect several cell types tested (wild-type chinese hamster ovary (CHO) cells and glycosylation mutants, Vero and LLCMK2 cells). However, the extent of infection varied. Mutant cells which present few or no surface-exposed sialic acid residues were infected to a lower extent. Similar results were obtained if sialic acid residues were removed by previous neuraminidase treatment. Addition of sialic acid residues to surface-exposed glycoconjugates using fetuin as a sialic acid donor and the trans-sialidase of Trypanosoma cruzi rendered the cells more easily infected by Toxoplasma gondii. These observations indicate that surface-exposed carbohydrate residues of the host cell are involved on the process of Toxoplasma gondii-host cell recognition. 相似文献
18.
Braun L Cannella D Pinheiro AM Kieffer S Belrhali H Garin J Hakimi MA 《International journal for parasitology》2009,39(1):81-721
SUMOylation, the reversible covalent attachment of small ubiquitin-like modifier (SUMO) peptides has emerged as an important regulator of target protein function. Here we show, by characterization of the Toxoplasma gondii SUMO pathway, that the SUMO conjugation system operates in apicomplexan parasites. A gene encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation and release. Various SUMO conjugates were immuno-detected and by means of a global proteomic-based approach, we identified several T. gondii SUMOylated proteins that reveal many diverse cellular processes in which the modification plays a role. More specifically, SUMO conjugates were seen at the tachyzoite surface in response to signaling generated by host cell contact at the time of invasion. Also, under tissue culture conditions that stimulate bradyzoite differentiation (alkaline pH), we observed the conjugates at the parasitophorous vacuole membrane. The labeling was also at the surface of the mature cysts isolated from parasite-infected mouse brain. Overall, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in T. gondii with initial data indicating that it is likely to play a putative role in host cell invasion and cyst genesis. 相似文献
19.
Ramakrishnan S Docampo MD Macrae JI Pujol FM Brooks CF van Dooren GG Hiltunen JK Kastaniotis AJ McConville MJ Striepen B 《The Journal of biological chemistry》2012,287(7):4957-4971
Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [(13)C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0-26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host. 相似文献
20.
The role of Ca2+ in conoid extrusion was investigated in isolated Toxoplasma gondii tachyzoites by treatment with Ca2+-ionophores, Ca2+-chelating agents and an inhibitor of the Ca2+-ATPase at the endoplasmic reticulum. The results were evaluated by light phase-contrast microscopy and electron microscopy. lonomycin (0.5-1 μM) caused an immediate and sustained extrusion of the conoid in up to 80% of the tachyzoites, depending on the concentrations of ionophore and Ca2+ in the medium. However, over 50% of the tachyzoites extruded the conoid when treated with ionomycin in Ca2+-free saline complemented with EGTA. The effect of ionomycin was reversible and could be induced a second time in about half of the responsive population. Similar results were obtained with A23187. Conoid extrusion induced by ionomycin in Ca2+-free medium was almost completely abolished when the tachyzoites were previously loaded with a permeable compound known to chelate intracellular Ca2+ (BAPTA/AM; 25μM). On the other hand, exposure of tachyzoites to the Ca2+-ATPase inhibitor thapsigargin (0.5-1μM) produced significant extrusion of the conoid. Tachyzoites loaded with BAPTA/AM as well as those treated with ionomycin, i.e. with conoids paralyzed in opposite positions, had a diminished capacity to invade cultured epithelial cells. A substantial reduction in the response to stimulation by ionomycin was found also in parasites treated with cytochalasin-D, a drug that depolymerizes actin-filaments. The results suggest that Ca2+-release from internal stores may act as a key signal to activate a mechanism of conoid extrusion probably mediated, at least in part, by actin-filaments. 相似文献