首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Successful restoration of ephemeral wetlands worldwide is particularly challenging, given the often‐precise relationship between hydrological features and plant community dynamics. Using a long‐term experiment in vernal pool restoration, we compare hydrological and vegetative characteristics of constructed pools with those of adjacent, naturally occurring reference pools. Although constructed and reference pools were similar in maximum water depth and duration of inundation at the beginning of our experiment in 2000, constructed pools were shallower and inundated for shorter periods by 2009. Native vernal pool species were able to establish populations in many constructed pools, and seeding sped their establishment. Comparing seeded plots in constructed pools with unseeded plots in reference pools, we found no significant difference in the cover of seeded species, native species, or exotic species in most years. In recent years, however, native species have declined in both constructed and reference pools. Finally, the cover of native vernal pool species was positively and non‐linearly associated with both water depth and seeding treatment. We conclude that the establishment of appropriate hydrological conditions was necessary, but not sufficient to promote successful performance of vernal pool species in constructed pools. Constructed pools with hydrologic conditions similar to those of reference pools were more likely to support populations of native vernal pool plant species, but only seeded pools were similar to reference pools in abundance of native cover. Most importantly, hydrological conditions in experimental pools have worsened since their construction, which may hamper persistence of native species in this restoration effort.  相似文献   

2.
  总被引:1,自引:0,他引:1  
Despite some highly visible projects that have resulted in environmental benefits, recent efforts to quantify the number and distribution of river restoration projects revealed a paucity of written records documenting restoration outcomes. Improving restoration designs and setting watershed priorities rely on collecting and making accessible this critical information. Information within the unpublished notes of restoration project managers is useful but rarely documents ecological improvements. This special section of Restoration Ecology is devoted to the current state of knowledge on river restoration. We provide an overview of the section’s articles, reflecting on lessons learned, which have implications for the implementation, legal, and financing frameworks for restoration. Our reflections are informed by two databases developed under the auspices of the National River Restoration Science Synthesis project and by extensive interactions with those who fund, implement, and permit restoration. Requiring measurable ecological success criteria, comprehensive watershed plans, and tracking of when and where restoration projects are implemented are critical to improving the health of U.S. waters. Documenting that a project was put in the ground and stayed intact cannot be equated with ecological improvements. However, because significant ecological improvements can come with well‐designed and ‐implemented stream and river restorations, a small investment in documenting the factors contributing to success will lead to very large returns in the health of our nation’s waterways. Even projects that may appear to be failures initially can be turned into success stories by applying the knowledge gained from monitoring the project in an adaptive restoration approach.  相似文献   

3.
    
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

4.
    
Converting mangroves to other land cover types can induce large emissions of carbon dioxide, depending on the type of land use and land cover (LULC) change. However, mangroves may also recover their ecosystem carbon stocks rapidly following restoration, potentially offsetting carbon stock losses. While studies have quantified these tradeoffs at global scales using coarse metrics, fewer studies have quantified them at national scales at higher resolution. Here, we used high-resolution data sets of LULC for mangroves in Thailand to quantify district-level gross and net changes in mangrove carbon stocks from ~1960 to 2014. We found emissions based on gross gain and loss statistics (7.18 ± 0.24 million Mg C) to be greater than those associated with emissions based on net area change statistics (1.65 ± 0.26 million Mg C) by a factor of four. The difference in estimates arises from slower rates of carbon stock recovery following reforestation relative to carbon stock loss following LULC change. Overall, we found the greatest gains in mangrove carbon stocks to be from mangrove expansion in areas of accreting sediments, which were strongly correlated with district-level extent of undisturbed mangroves. Our results show that net loss statistics may greatly underestimate emissions associated with LULC change in mangroves. Additionally, our findings suggest that gains in mangrove carbon stocks associated with natural establishment at the periphery of standing mangroves may offset substantial carbon stock losses at national scales.  相似文献   

5.
  总被引:8,自引:0,他引:8  
Freshwater biodiversity is the over‐riding conservation priority during the International Decade for Action ‐‘Water for Life’ ‐ 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8 % of the Earth's surface, yet this tiny fraction of global water supports at least 100 000 species out of approximately 1.8 million ‐ almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the ‘Water for Life’ decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as ‘receivers’ of land‐use effluents, and the problems posed by endemism and thus non‐substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and ‐ in the case of migrating aquatic fauna ‐ downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade‐offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long‐term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management ‐ one that has been appropriately termed ‘reconciliation ecology’.  相似文献   

6.
Climate change effects on some ecosystems are still poorly known, particularly where they interact with other climatic phenomena or stressors. We used data spanning 25 years (1981–2005) from temperate headwaters at Llyn Brianne (UK) to test three hypotheses: (1) stream macroinvertebrates vary with winter climate; (2) ecological effects attributable to directional climate change and the North Atlantic Oscillation (NAO) are distinguishable and (3) climatic effects on macroinvertebrates depend on whether streams are impacted by acidification. Positive (i.e. warmer, wetter) NAO phases were accompanied by reduced interannual stability (=similarity) in macroinvertebrate assemblage in all streams, but associated variations in composition occurred only in acid moorland. The NAO and directional climate change together explained 70% of interannual variation in temperature, but forest and moorland streams warmed respectively by 1.4 and 1.7°C (P<0.001) between 1981 and 2005 after accounting for NAO effects. Significant responses among macroinvertebrates were confined to circumneutral streams, where future thermal projections (+1, +2, +3°C) suggested considerable change. Spring macroinvertebrate abundance might decline by 21% for every 1°C rise. Although many core species could persist if temperature gain reached 3°C, 4–10 mostly scarce taxa (5–12% of the species pool) would risk local extinction. Temperature increase in Wales approaches this magnitude by the 2050s under the Hadley HadCM3 scenarios. These results support all three hypotheses and illustrate how headwater stream ecosystems are sensitive to climate change. Altered composition and abundance could affect conservation and ecological function, with the NAO compounding climate change effects during positive phases. We suggest that acidification, in impacted streams, overrides climatic effects on macroinvertebrates by simplifying assemblages and reducing richness. Climatic processes might, nevertheless, exacerbate acidification or offset biological recovery.  相似文献   

7.
    
Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.  相似文献   

8.
    
Climate change is altering hydrological cycles globally, and in Mediterranean (med-) climate regions it is causing the drying of river flow regimes, including the loss of perennial flows. Water regime exerts a strong influence over stream assemblages, which have developed over geological timeframes with the extant flow regime. Consequently, sudden drying in formerly perennial streams is expected to have large, negative impacts on stream fauna. We compared contemporary (2016/17) macroinvertebrate assemblages of formerly perennial streams that became intermittently flowing (since the early 2000s) to assemblages recorded in the same streams by a study conducted pre-drying (1981/82) in the med-climate region of southwestern Australia (the Wungong Brook catchment, SWA), using a multiple before-after, control-impact design. Assemblage composition in the stream reaches that remained perennial changed very little between the studies. In contrast, recent intermittency had a profound effect on species composition in streams impacted by drying, including the extirpation of nearly all Gondwanan relictual insect species. New species arriving at intermittent streams tended to be widespread, resilient species including desert-adapted taxa. Intermittent streams also had distinct species assemblages, due in part to differences in their hydroperiods, allowing the establishment of distinct winter and summer assemblages in streams with longer-lived pools. The remaining perennial stream is the only refuge for ancient Gondwanan relict species and the only place in the Wungong Brook catchment where many of these species still persist. The fauna of SWA upland streams is becoming homogenised with that of the wider Western Australian landscape, as drought-tolerant, widespread species replace local endemics. Flow regime drying caused large, in situ alterations to stream assemblage composition and demonstrates the threat posed to relictual stream faunas in regions where climates are drying.  相似文献   

9.
    

Aim

Studies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.

Location

North American Atlantic Slope rivers.

Methods

To understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.

Results

Brooding duration (p < .01) and host fish specificity (p = .02) were significantly related to mussel species distribution. Long‐term brooders were more likely than short‐term brooders to colonize formerly glaciated rivers, as were host generalists compared to specialists. Body size and host infection strategy were not predictive of movement into formerly glaciated rivers (p > .10).

Main conclusions

Our results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.
  相似文献   

10.
    
Population monitoring and research are essential for conserving wildlife, but these activities may directly impact the populations under study. These activities are often restricted to minimize disturbance, and impacts must be weighed against knowledge gained. However, few studies have quantified the effects of research or census-related visitation frequency on populations, and low visitation rates have been hypothesized to have little effect. Hibernating bats have been hypothesized to be especially sensitive to visitation because they have limited energetic stores to survive winter, and disturbance may partly deplete these stores. We examined the effect of site visitation frequency on population growth rates of three species of hibernating bats, little brown bats (Myotis lucifugus), Indiana bats (Myotis sodalis) and tri-colored bats (Perimyotis subflavus), both before and after detection of the disease white-nose syndrome. We found no evidence that more frequent visits decreased population growth rates for any of these species. Estimated coefficients were either the opposite sign as hypothesized (population growth rates increased with visitation frequency) or were very small (difference in population growth rates 0.067% [SE 2.5%]–1.8% [SE 9.8%]) relative to spatial and temporal variation (5.9–32%). In contrast, white-nose syndrome impacts on population growth rates were easily detected and well-characterized statistically (effect sizes 4.4–8.0; severe population declines occurred in the second and third years after pathogen detection) indicating that we had sufficient power to detect effects. These results indicate that visitation frequency (for M. sodalis: annual vs. semi-annual counts; for M. lucifugus and P. subflavus: 1–3 three research visits per year) had undetectable impacts on bat population growth rates both with and without the additional stress of an emerging infectious disease. Knowledge gained from censuses and research may outweigh disturbance due to human visitation if it can be used to understand and conserve the species.  相似文献   

11.
At present, there are 43 self-sustaining fish species in Norwegian fresh waters, 11 (26%) of which are non-native, representing four families (Salmonidae, Cyprinidae, Centrarchidae and Ictaluridae). Human-mediated fish introductions probably began in the 15th century with common carp Cyprinus carpio, but most have occurred between the late 1800s and late 1900s. The number of known established populations varies from one (goldfish Carassius auratus ) to nearly 250 (tench Tinca tinca ). Dispersal risk is also highest with tench, which is being spread by anglers for its appeal as a trophy fish. Intentional introductions to improve amenity angling have been part of fisheries management programmes ( e.g. brook trout Salvelinus fontinalis ), so this appears to be an increasingly common introduction vector despite the prohibition under legislation of introducing any species of non-native fishes. Some introduced species, such as brook trout, have declined in abundance and number of populations as the quality of acidified waters has been restored, being replaced by native brown trout Salmo trutta . Further range expansion by some species ( e.g. common carp, goldfish and pumpkinseed Lepomis gibbosus ) is probably restricted by current climatic conditions.  相似文献   

12.
    
Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide key facets of climate change adaptation for running waters.  相似文献   

13.
    
ABSTRACT We studied Blanding's turtle (Emydoidea blandingii) microhabitat in natural wetlands and wetlands constructed for the turtles in Dutchess County, New York, USA. Investigation of these topics can provide information on ways to increase the extent of Blanding's turtle habitat, improve its quality, and assure that conservation or restoration managers do not overlook key habitat characteristics. Microhabitat was determined by radiotracking individuals to their exact locations and recording habitat variables. Blanding's turtles were associated with shallow water depths (x̄ = 30 cm), muck substrates, and areas of abundant vegetation (total cover xM = 87%). Buttonbush (Cephalanthus occidentalis)had the greatest mean total cover (29%). In the constructed wetlands, Blanding's turtles were associated with significantly less cover and warmer water than in the natural wetlands. Blanding's turtles appeared to be using the constructed wetlands to bask and forage in the spring and early summer but moved to deeper wetlands in late summer when the constructed wetlands dried up or became too warm. For Blanding's turtles, new habitat should contain abundant emergent vegetation (including buttonbush in Dutchess County and other areas where the turtles are known to use buttonbush swamps), basking areas, muck, floating plant material, and submerged aquatic vegetation. Blanding's turtle's use of constructed wetlands highlights the value of a complex of connected wetland habitats in providing for the varied needs of the turtle.  相似文献   

14.
Climate change: the science and the policy   总被引:4,自引:3,他引:4  
  相似文献   

15.
    
ABSTRACT

Salt lakes are significant landscape features in Australia. The three studied lakes, in particular, are recognized as being of national (Gnotuk) and international significance (Keilambete, Bullenmerri) for their ecological, social, and scientific values. The lake levels have been declining since the mid-1800s, the likely cause being a natural climate-driven decrease in precipitation and increase in evaporation. With the prospect of human-induced climate change further altering regional climate, this article presents a framework and results for assessing the impacts and risks of climate change on lake levels and salinity. A lake water balance model was applied with the inputs of climate observations and modeled future climate variables. The latter are generated from 14 general circulation model simulations used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The resulting scenarios represent the range of likely outcomes of regional climate under enhanced greenhouse conditions to year 2100. Models project that all lake levels are likely to continue to decline, with the declines for Bullenmerri expected to exceed those of the other two lakes. The salinity in the lakes is likely to increase, with the rate of increase likely to become more rapid over time. Some implications of these findings are discussed.  相似文献   

16.
It is now accepted that most of the rivers and streams of Australia have been degraded to varying extents by European settlement. The scale and level of this degradation have been documented by State and Federal government authorities. To halt and reverse the degradation in the next two decades, it is crucial that the conservation and restoration of streams, rivers, riparian zones, and catchments become paramount in land and water management. Effective stream restoration requires a coordinated effort at the catchment level rather than at the level of many individual local sites. Monitoring, including the gathering of before-restoration data, and the setting of feasibly-attainable goals are key components of effective restoration. In planning projects and setting goals, it needs to be recognized that some goals may only be attained in the long-term. Large-scale restoration projects will require partnerships to be formed between resource managers and scientists, with other stakeholders possibly involved. Selected projects could be adaptively managed with the emphasis on gaining scientific knowledge on the effects of management interventions.  相似文献   

17.
    
More freshwater ecosystems are drying in response to global change thereby posing serious threat to freshwater biota and functions. The production of desiccation‐resistant forms is an important adaptation that helps maintain biodiversity in temporary freshwaters by buffering communities from drying, but its potential to mitigate the negative effects of drying in freshwater ecosystems could vary greatly across regions and ecosystem types. We explored this context dependency by quantifying the potential contribution of desiccation‐resistance forms to invertebrate community recovery across levels of regional drying prevalence (defined as the occurrence of drying events in freshwaters in a given region) and ecosystem types (lentic, lotic) in temporary neotropical freshwaters. We first predicted that regional drying prevalence influences the selection of species with desiccation‐resistant forms from the regional species pools and thus increases the ability of communities to recover from drying. Second, we predicted lentic freshwaters harbor higher proportions of species with desiccation‐resistant forms compared to lotic, in response to contrasted hydrologic connectivity. To test these predictions, we used natural experiments to quantify the contribution of desiccation‐resistant forms to benthic invertebrate community recovery in nine intermittent streams and six geographically isolated temporary wetlands from three Bolivian regions differing in drying prevalence. The contribution of desiccation‐resistant forms to community recovery was highest where regional drying prevalence was high, suggesting the species pool was adapted to regional disturbance regimes. The contribution of desiccation‐resistant forms to community recovery was lower in streams than in wetlands, emphasizing the importance of hydrologic connectivity and associated recolonization processes from in‐stream refuges to recovery in lotic systems. In all regions, the majority of functional traits were present in desiccation‐resistant taxa indicating this adaptation may help maintain ecosystem functions by buffering communities from the loss of functional traits. Accounting for regional context and hydrologic connectivity in community recovery processes following drying can help refine predictions of freshwater biodiversity response to global change.  相似文献   

18.
Species distribution models (SDMs) are commonly used to project future changes in the geographic ranges of species, to estimate extinction rates and to plan biodiversity conservation. However, these models can produce a range of results depending on how they are parameterized, and over‐reliance on a single model may lead to overconfidence in maps of future distributions. The choice of predictor variable can have a greater influence on projected future habitat than the range of climate models used. We demonstrate this in the case of the Ptunarra Brown Butterfly, a species listed as vulnerable in Tasmania, Australia. We use the Maxent model to develop future projections for this species based on three variable sets; all 35 commonly used so‐called ‘bioclimatic’ variables, a subset of these based on expert knowledge, and a set of monthly climate variables relevant to the species’ primary activity period. We used a dynamically downscaled regional climate model based on three global climate models. Depending on the choice of variable set, the species is projected either to experience very little contraction of habitat or to come close to extinction by the end of the century due to lack of suitable climate. The different conclusions could have important consequences for conservation planning and management, including the perceived viability of habitat restoration. The output of SDMs should therefore be used to define the range of possible trajectories a species may be on, and ongoing monitoring used to inform management as changes occur.  相似文献   

19.
One of the world's largest tidal wetland restorationprojects was conceived to offset the loss of nekton toonce-through cooling at a power plant on Delaware Bay,USA. An aggregated food chain model was employed toestimate the area of tidal salt marsh required toreplace these losses. The 5040 ha was comprised of twodegraded marsh types – Phragmites- dominatedmarshes and diked salt hay farms – at elevenlocations in oligo-mesohaline and polyhaline reachesof the estuary. At a series of summits convened withnoted experts in the field, it was decided to apply anecological engineering approach (i.e., self design,and minimal intrusion) in a landscape ecologyframework to the restoration designs while at the sametime monitoring long-term success of the project inthe context of a bound of expectation. The latterencompassed a range of reference marsh planforms andacceptable end-points established interactively withtwo advisory committees, numerous resource agencies,the permitting agency and multiple-stakeholder groups.In addition to the technical recommendations providedby the project's advisors, public health and safety,property protection and public access to the restoredsites were a constant part of the dialogue between theutility, its consulting scientists and theresource/permitting agencies. Adaptive management wasused to maintain the restoration trajectories, ensurethat success criteria were met in a timely fashion,and to protect the public against potential effects ofsalt intrusion into wells and septic systems, andagainst upland flooding. Herbicide spray, followed byprescribed burns and altered microtopography were usedat Phragmites-dominated sites, and excavation ofhigher order channels and dike breaching were themethods used to initiate the restorations at the dikedsalt hay farms. Monitoring consisted of evaluating therate of re-vegetation and redevelopment of naturaldrainage networks, nekton response to therestorations, and focused research on nutrient flux,nekton movements, condition factors, trophic linkages,and other specific topics. Because of its size anduniqueness, the Estuary Enhancement Program as thisproject is known, has become an important case studyfor scientists engaged in restoration ecology and theapplication of ecological engineering principles. Thehistory of this project, and ultimately theRestoration Principles that emerged from it, are thesubjects of this paper. By documenting the pathways tosuccess, it is hoped that other restoration ecologistsand practitioners will benefit from the experiences wehave gained.  相似文献   

20.
    
Prolonged drought due to climate change has negatively impacted amphibians in southern California, U.S.A. Due to the severity and length of the current drought, agencies and researchers had growing concern for the persistence of the arroyo toad (Anaxyrus californicus), an endangered endemic amphibian in this region. Range‐wide surveys for this species had not been conducted for at least 20 years. In 2017–2020, we conducted collaborative surveys for arroyo toads at historical locations. We surveyed 88 of the 115 total sites having historical records and confirmed that the arroyo toad is currently extant in at least 61 of 88 sites and 20 of 25 historically occupied watersheds. We did not detect toads at almost a third of the surveyed sites but did detect toads at 18 of 19 specific sites delineated in the 1999 Recovery Plan to meet one of four downlisting criteria. Arroyo toads are estimated to live 7–8 years, making populations susceptible to prolonged drought. Drought is estimated to increase in frequency and duration with climate change. Mitigation strategies for drought impacts, invasive aquatic species, altered flow regimes, and other anthropogenic effects could be the most beneficial strategies for toad conservation and may also provide simultaneous benefits to several other native species that share the same habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号