首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.  相似文献   

2.
Xylem in early tracheophytes   总被引:4,自引:0,他引:4  
  相似文献   

3.
The problem of relationships among the major basal living groups of land plants is long standing, yet the uncertainty as to the phylogenetic affinity of these lines persists in the literature. Molecular and modern cladistic studies of the phylogenetic relationships of the above groups resulted in a large number of conflicting topologies. However, with the exception of the cladistic analyses of spermatogenesis, suggesting monophyly of extant bryophytes, these studies agree the paraphyletic bryophyte grade is basal within the embryophyte tree. Here we would like to present analyses on the basis of the concatenated datasets of nucleotide and amino-acid sequences of 57 protein-coding genes common to 17 chloroplast genomes of land plants and a charophyte alga Chaetosphaeridium globosum. Character-wise, these are the largest datasets currently available to address the problem of basal relationships within embryophytes. Main lineages of bryophytes, i.e liverworts, hornworts and mosses are represented in our alignments with a single taxon, whereas 14 taxa represent the tracheophytes. With our data, phylogeny with liverwort basal appears to be and artifact related to high and unequal A+T contents among the sequences analysed. Reducing this compositional bias and applying methods developed to counter it, we recovered an alternative, strongly supported topology wherein both bryophytes and tracheophytes are monophyletic. Within bryophytes, hornworts are basal and liverworts are sister to mosses.  相似文献   

4.
Lower plant species including some green algae, non‐vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+‐dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ‐aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg‐228, which seals the NADP+ in the coenzyme cavity via its 2′‐phosphate and α‐phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg‐121 and Arg‐457, and a hydrogen bond with Tyr‐296. While both arginine residues are pre‐formed for substrate/product binding, Tyr‐296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.  相似文献   

5.
A cladistic approach to the phylogeny of the “Bryophytes”   总被引:1,自引:0,他引:1  
The importance of a cladistic approach in reconstructing the phylogeny of bryophytes is discussed and illustrated by an analysis of the major groups of bryophytes with respect to the tracheophytes and the green algae. The cladistic analysis, using 51 characters taken from the literature, gives the following tentative results: (1) the embryophytes as a whole are monophyletic; (2) the bryophytes (sensu lato) are paraphyletic; (3) the mosses share a more recent common ancestor with the tracheophytes than do the liverworts or hornworts; (4) the hornworts appear to share a more recent common ancestor with the moss-tracheophyte lineage than with the liverworts; however, the existence of several homoplasies makes this placement more problematical; (5) the origin of alternation of generations in the embryophytes, based on out-group comparison with their oogamous, haplontic, algal sister groups, was by progressive elaboration of the primitively epiphytic sporophyte generation; and (6) the presence of vascular tissue (xylem and phloem) can best be interpreted as a synapomorphy of the moss-tracheophyte clade, and tracheids (xylem with ornamented walls) as a synapomorphy of the tracheophytes; therefore, the prevailing designation of “vascular plants” for the tracheophytes alone is inaccurate.  相似文献   

6.
Lignins are complex phenolic heteropolymers present in xylem and sclerenchyma cell walls in tracheophytes. The occurrence of lignin-like polymers in bryophytes is controversial. In this study two polyclonal antibodies against homoguaiacyl (G) and guaiacyl/syringyl (GS) synthetic lignin-like polymers that selectively labelled lignified cell walls in tracheophytes also bound to cell walls in bryophytes, the GS antibody usually giving a stronger labelling than the G antibody. In contrast to tracheophytes, the antibody binding in liverworts and mosses was not tissue-specific. In the hornworts Megaceros flagellaris and M. fuegiensis the pseudoelaters and spores were labelled more intensely than the other cell types with the GS antibody. The cell walls in Nitella were labelled with both antibodies but no binding was observed in Coleochaete. The results suggest that the ability to incorporate G or GS moieties in cell walls is a plesiomorphy (primitive character) of the land plant clade.  相似文献   

7.
SUMMARY OF GREEN PLANT PHYLOGENY AND CLASSIFICATION   总被引:7,自引:0,他引:7  
Abstract— A cladogram of green plants involving all major extant groups of green algae, bryophytes, pteridophytes, and seed plants is presented. It is partly based on contributions by B. Mishler and S. Churchill, H. Wagner, and P. Crane. The relationships of green plants to other green organisms ( Prochloron , euglenophytes) are discussed. The characters and subclades of the cladogram are briefly discussed, with an attempt to indicate weak points. The possibility of including some major extinct groups is considered. A cladistic classification consistent with the cladogram is presented. Grades are abandoned as taxa and major clades like the division Chlorophyta (green algae excluding micro-monadophytes and charophytes sensu Mattox and Stewart), the division Streptophyta (charophytes + embryophytes), the subdivision Embryophytina (land plants or embryophytes), the superclass Tracheidatae (tracheophytes), and the class Spermatopsida (seed plants) are recognized.  相似文献   

8.
Abstract Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles, that is, alternation of multicellular gametophytic and sporophytic generations. The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent, dominant sporophyte and a reduced gametophyte. The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories. The Antithetic Theory proposes a green algal ancestor with a gametophyte‐dominant haplobiontic life cycle. The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations. The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats. Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants. In recent years, exceptionally well‐preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian, 410 Ma), and the complete life cycle of several Rhynie chert plants has been reconstructed. All show an alternation of more or less isomorphic generations, which is currently accepted as the plesiomorphic condition among all early polysporangiophytes, including basal tracheophytes. Here we review the existing evidence for early embryophyte gametophytes. We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes. All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

9.
Bryophytes (mosses) are non‐vascular plants inhabited by a large number of fungal species, but whether mosses can act as reservoirs of fungal pathogens of crop plants has gained little attention. A few moss species including the Sunagoke moss (Racomitrium japonicum; family Grimmiaceae) are found to have modern economical applications in uses such as greening of urban environments. In a previous study, we identified fungi causing symptoms of varying severity in the commercially grown Sunagoke moss. The aim of this study was to test whether the same fungal isolates are pathogenic to vascular plants. An isolate of Fusarium avenaceum lethal to the Sunagoke moss caused root and crown rot in barley (Hordeum vulgare) and reduced germination of tomato (Solanum lycopersicum) and carrot (Daucus carota) grown in the infested soil. An isolate of Cladosporium oxysporum causing mild symptoms in moss reduced growth and caused reddening and premature death of carrot seedlings. On the other hand, isolates of Alternaria alternata and Fusarium oxysporum lethal to the Sunagoke moss caused no detectable symptoms in any tested vascular plant, suggesting specialisation of these isolates to moss. Chloroplast repositioning was observed in the neighbouring cells towards the initially infected cell following infection with F. avenaceum and A. alternata in Physcomitrella patens (family Funariaceae), a model moss used to study microscopic symptoms. Infection of P. patens with a non‐virulent Apiospora montagnei isolate induced formation of papillae in the moss cells, indicating activation of host defence as described in vascular plants. Results suggest that mosses and vascular plants may be linked by a common microbial interface constituted by pathogenic fungi. The findings have epidemiological implications that have gained little previous attention.  相似文献   

10.
We report a new approach for molecular sex identification of extant Ursinae and Tremarctinae bears. Two Y‐specific fragments (SMCY and 318.2) and one X‐specific fragment (ZFX) are amplified in a multiplex PCR, yielding a double test for male‐specific amplification and an internal positive control. The primers were designed and tested to be bear‐specific, thereby minimizing the risk of cross‐amplification in other species including humans. The high sensitivity and small amplicon sizes (100, 124, 160 base pairs) facilitate analysis of non‐invasively obtained DNA material. DNA from tissue and blood as well as from 30 non‐invasively collected hair and faeces yielded clear and easily interpretable results. The fragments were detected both by standard gel electrophoresis and automated capillary electrophoresis.  相似文献   

11.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

12.
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono‐ and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl‐MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl‐MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12‐oxo‐phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA‐containing galactolipids in the plant kingdom. While acyl‐MGDG was found to be ubiquitous in green tissue of plants ranging from non‐vascular plants to angiosperms, OPDA‐containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non‐oxidized and OPDA‐containing acyl‐MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl‐MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.  相似文献   

13.
14.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

15.
16.
17.
The occurrence frequencies of nucleotide bases are biased to those of T and A bases even at third codon positions for conserved amino acid residues with fourfold degeneracy in the chloroplasts of land plants. Regarding this bias as the result of selection, the base changes at these positions are fully analyzed theoretically in terms of mutation and selection. Although the degree of bias is considerably different depending on the lineages of land plants, the theoretical curves considering the influence of selection in the respective lineages provide a reasonable set of evolutionary distances for the relative base change probabilities estimated empirically from base changes enumerated in the comparison of rbcL genes. By using the fossil records of earliest seed plants in the Late Devonian and of uniaperturate and triaperturate pollen types in the early stage of the Cretaceous as calibration points, the divergence of Marchantiidae and a common ancestor of other land plants is estimated to have occurred 509 Mya, together with the estimation of a mutation rate of 1.45 × 10–9 year–1 per site. The other bryophytes such as Bryopsida, Anthocerotopsida, and Jungermanniidae are sister groups to tracheophytes, the divergence of bryophytes and tracheophytes being estimated to have occurred 483 Mya. The evolutionary distance of Gnetopsida from Coniferopsida and Magnoliophyta is concluded to be decisively longer than the distance between Coniferopsida and Magnoliophyta, i.e., the former divergence corresponds to 286 Mya and the latter to 211 Mya.  相似文献   

18.
Environmental heterogeneity can have profound effects on agroecosystem function and it is important for improving ecosystem services such as biological control. Promoting system diversity via non‐crop plants is one method for increasing habitat heterogeneity within farmscapes. Non‐crop plants provide access to refuges and alternative food resources provide multiple benefits to enhance populations of arthropod predators. In this study, we examined the effects of small‐scale spatial structure on life‐stage specific interactions between the native coccinellid, Hippodamia convergensGuérin‐Méneville, and the exotic Harmonia axyridis (Pallas) (both Coleoptera: Coccinellidae), which overlap in spatial distribution in many crop systems. Squash [Cucurbita pepo L. (Cucurbitaceae)] and non‐crop mugwort [Artemisia vulgaris L. (Asteraceae)] plants with and without aphids were used as a model of spatial heterogeneity in micro‐ and mesocosm experiments. In response to factorial treatment combinations, we evaluated oviposition behavior, egg predation, larval survival, and larval predator‐prey and predator‐predator interactions. Adult H. convergens displayed higher foraging activity on aphids when exposed to complex habitats containing a non‐crop plant. In the presence of the exotic coccinellid, H. convergens preferred to deposit eggs on the non‐crop plant. Furthermore, a combination of spatial heterogeneity and prey availability reduced larval intraguild predation and cannibalism, and improved reproductive output of H. convergens by reducing intra‐ and interspecific egg predation. Our results provide evidence that life‐stage‐specific intraguild interactions are mediated by access to non‐crop plants. Thus, the introduction or maintenance of non‐crop plants has the potential to enhance coexistence of multiple natural enemies and improve top‐down control of pests.  相似文献   

19.
Coucals are large, predatory, primarily ground‐dwelling cuckoos of the genus Centropus, with 26 extant species ranging from Africa to Australia. Their evolutionary and biogeographical history are poorly understood and their fossil record almost non‐existent. Only one species (Centropus phasianinus) currently inhabits Australia, but there is now fossil evidence for at least three Pleistocene species. One of these (Centropus colossus) was described from south‐eastern Australia in 1985. Here we describe additional elements of this species from the same site, and remains of two further extinct species from the Thylacoleo Caves of the Nullarbor Plain, south‐central Australia. The skeletal morphology and large size of the three extinct species indicates that they had reduced capacity for flight and were probably primarily ground‐dwelling. The extinct species include the two largest‐known cuckoos, weighing upwards of 1 kg each. They demonstrate that gigantism in this lineage has been more marked in a continental context than on islands, contrary to the impression gained from extant species. The evolutionary relationships of the Australian fossil coucals are uncertain, but our phylogenetic analysis indicates a possible close relationship between one of the Nullarbor species and extant Centropus violaceus from the Bismarck Archipelago. The presence of three coucals in southern Australia markedly extends the geographical range of the genus from tropical Australia into southern temperate regions. This demonstrates the remarkable and consistent ability of coucals to colonize continents despite their very limited flying ability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号