首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The objectives of the present study were to evaluate the inheritance and nucleotide sequence profiles of microsatellite genetic markers in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] and its putative tetraploid and diploid ancestors, and to test possible microsatellite mutation mechanisms in polyploids by direct sequencing of alleles. Sixty three microsatellite loci were isolated from genomic libraries of I. batatas and sequenced. PCR primers were designed and used to characterize microsatellite loci in two hexaploid I. batatas populations, a tetraploid Ipomoea trifida population, and a diploid I. trifida population. Nine out of the sixty three primer pairs tested yielded a clearly discernible, heritable banding pattern; five showed Mendelian segregation. All other primer pairs produced either smeared banding patterns, which could not be scored, or no bands at all in I. batatas. All of the primers which produced discernible banding patterns from I. batatas also amplified products of similar size in tetraploid and diploid I. trifida accessions. The sequence analysis of several alleles in the three species showed differences due to mutations in the repeat regions consistent with small differences in the repeat number. However, in some cases insertions/deletions and base substitutions in the microsatellite flanking regions were responsible for polymorphisms in both polyploid and diploid species. These results provide strong empirical evidence that complex genetic mechanisms are responsible for SSR allelic variation in Ipomoea. Four I. batatas microsatellite loci showed polysomic segregation fitting tetraploid segregation ratios. To our knowledge this is the first report of segregation ratios for microsatellites markers in polyploids. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

2.
During 2010–2011, a severe leaf spot disease of sweet potato (Ipomoea batatas) was found in Haikou City, Hainan province of China. The disease is characterized with large, irregular, brown, necrotic lesions on the margin or in the centre of leaves. A species of Stemphylium was consistently recovered from pieces of symptomatic tissues on PDA. Based on morphological characteristics and molecular identification by rDNA‐ITS gene analysis, the fungal species was identified as Stemphylium solani Weber, and its pathogenicity was confirmed by Koch's postulates. This is the first report of leaf spot on sweet potato caused by Ssolani in China.  相似文献   

3.
Summary Tetraploid F1 hybrids between Ipomoea batatas, sweet potato (2n = 6x = ca. 90), and diploid (2n = 2x = 30) I. trifida (H. B. K.) Don. showed various degrees of fertility reduction. The present study aimed to clarify its causes by cytological analysis of meiotic chromosome behavior in the diploid and sweet potato parents and their tetraploid hybrids. The diploid parents showed exclusively 15 bivalents, and the sweet potato parents exhibited almost perfect chromosome pairing along with predominant multivalent formation. Their hybrids (2n = 4x= 57–63) formed 2.6–5.0 quadrivalents per cell, supporting the autotetraploid nature. The meiotic aberratios of the hybrids were characterized by the formation of univalents, micronuclei, and abnormal sporads (monad, dyad, triad, and polyad). The causes underlying these aberrations were attributed in part to the multivalent formation, and in part to a disturbance in the spindle function. Three hybrids showing serious meiotic aberrations were very low in fertility. The utilization of the sweet potato-diploid I. trifida hybrids for sweet potato improvement is described and, further, the role of interploidy hybridization in the study of the sweet potato evolution is discussed.  相似文献   

4.
Ipomoea trifida (H. B. K.) G. Don. is the most likely diploid ancestor of the hexaploid sweet potato, I. batatas (L.) Lam. To assist in analysis of the sweet potato genome, de novo whole-genome sequencing was performed with two lines of I. trifida, namely the selfed line Mx23Hm and the highly heterozygous line 0431-1, using the Illumina HiSeq platform. We classified the sequences thus obtained as either ‘core candidates’ (common to the two lines) or ‘line specific’. The total lengths of the assembled sequences of Mx23Hm (ITR_r1.0) was 513 Mb, while that of 0431-1 (ITRk_r1.0) was 712 Mb. Of the assembled sequences, 240 Mb (Mx23Hm) and 353 Mb (0431-1) were classified into core candidate sequences. A total of 62,407 (62.4 Mb) and 109,449 (87.2 Mb) putative genes were identified, respectively, in the genomes of Mx23Hm and 0431-1, of which 11,823 were derived from core sequences of Mx23Hm, while 28,831 were from the core candidate sequence of 0431-1. There were a total of 1,464,173 single-nucleotide polymorphisms and 16,682 copy number variations (CNVs) in the two assembled genomic sequences (under the condition of log2 ratio of >1 and CNV size >1,000 bases). The results presented here are expected to contribute to the progress of genomic and genetic studies of I. trifida, as well as studies of the sweet potato and the genus Ipomoea in general.  相似文献   

5.
6.
  • 1 The sweet potato butterfly Acraea acerata is an indigenous species in Ethiopia that has become a major pest on the introduced sweet potato Ipomoea batatas. To assess the role of wild Ethiopian Ipomoea species as host plants, the presence of larvae on wild ipomoeas was studied, and female oviposition choice and larval performance were tested on five wild ipomoeas, as well as on sweet potato.
  • 2 In laboratory tests, oviposition and larval development were successful on two wild ipomoeas (Ipomoea tenuirostris and Ipomoea cairica) but no oviposition occurred on the remaining three species. Of the latter, larvae did not feed on Ipomoea hochstetteri and Ipomoea indica, and survival rates were extremely low on Ipomoea purpurea.
  • 3 Sweet potato was a better host plant than I. tenuirostris and I. cairica in terms of oviposition preference, larval survival and pupal size; pupae were larger, resulting in more fecund female butterflies.
  • 4 In the wild butterfly populations were abundant on I. tenuirostris but absent on I. cairica. Females also tended to prefer I. tenuirostris to I. cairica in oviposition choice experiments. However, no significant differences in performance were found between larvae raised on I. tenuirostris and I. cairica in the laboratory.
  • 5 Wild populations of A. acerata also existed on Ipomoea obscura, a plant not investigated in the present study.
  • 6 The abundance of A. acerata on wild ipomoeas is too low to likely affect butterfly population densities on sweet potato. However, wild populations may act as reservoirs subsequent to butterfly population bottlenecks on sweet potato.
  相似文献   

7.
Experiments were conducted to asymmetrically fuse protoplasts from sweet potato (Ipomoea batatas L. Lam.) and its wild relativesI. trifida Don. andI. lacunosa L. Protoplasts of sweet potato were treated with iodoacetamide, whereas those ofI. trifida Don. andI. lacunosa L. were irradiated with X-rays. The asymmetric protoplast fusion was carried out by the electrofusion method and by polyethylene glycol treatment. Electrically-fused protoplasts initiated cell division, and then formed calli earlier than the polyethylene glycol-fused protoplasts. Plant regeneration occurred only in electrofused calli, suggesting that polyethylene glycol had some toxic effect on plant regeneration ability. Analysis of peroxidase isozymes confirmed the interspecific hybrid characteristics of both the fusion-derived calli and regenerated plants.  相似文献   

8.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

9.
Genetic diversity and relationships of 40 accessions of Ipomoea, representing ten species of series Batatas, were examined using ISSR markers and restriction-site variation in four non-coding regions of chloroplast DNA. A total of 2071 ISSR fragments were generated with 15 primers in these accessions and, on average, 52 bands per accession were amplified. Most of the primers contained dinucleotide repeats. The ISSR fragments were highly polymorphic (62.2%) among the 40 accessions studied. Restriction analysis of chloroplast (cp) DNA revealed 47 informative restriction-site and length mutations. Phylogenetic analyses of ISSR and cpDNA datasets generally revealed similar relationships at the interspecific level, but the high polymorphism of ISSRs resulted in a better separation of intraspecific accessions. However, the combined ISSR and cpDNA dataset appeared to be appropriate in resolving both intra- and interspecific relationships. Of the species examined, I. trifida was found to be the most closely related to cultivated sweetpotato, the hexaploid I. batatas, while I. ramosissima and I. umbraticola were the most distantly related to I. batatas within the series. Ipomoea triloba, hitherto considered to be one of the ancestors of sweetpotato, was only distantly related to sweetpotato based on ISSR similarity index. Received: 4 January 1999 / Accepted: 27 September 1999  相似文献   

10.
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self‐compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high‐confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome‐enabled development of inbred diploid potatoes with the potential to accelerate potato breeding.  相似文献   

11.
Overwhelming evidence points to an American origin for the sweet potato Ipomoea batatas (L.) Lam. Attempts have been made to identify related diploid species from Mexico, and to use these in hybridisation experiments with I. batatas. The sweet potato is a poor seed setter but abundant bloom occurs in Jamaica very late in the year. Attempts at hybridisation between I. batatas (2n=90) and I. trichocarpa (Elliott) (2n=30) or I. gracilis (2n=30) has been tolerably successful. A very high degree of self-incompatibility was demonstrated in all three species investigated but successful crosses were made using different plants of I. trichocarpa. An investigation of pollen viability showed that in all cases pollen could germinate but pollen tube growth was abnormal in incompatible pollinations. I. trichocarpa hybridised readily with I. batatas when the former was used as female parent. Embryo development in such a cross proceeded slowly, and stopped before cotyledon formation. No viable seeds were obtained. A comparison of embryo development in hybrid and normal seeds brought to light anomalies in development and structure of endosperm and maternal tissue in the hybrid.  相似文献   

12.
A full-length cDNA of Rubisco activase (IBrcaI) was cloned from sweet potato (Ipomoea batatas (L.) Lam) using Rapid-Amplification of cDNA Ends (RACE). IBrcaI contains a 1,347 bp open reading frame encoding a protein of 439 amino acids. The sequence alignment of multiple Rubisco activase genes from sweet potato and other plants showed high homology at two previously described ATP-binding sites. Western blot analysis indicated that there are two Rubisco activase proteins in sweet potato. Expression of IBrcaI was only detected in leaves. In the 14 h light and 10 h dark photoperiods, maximal and minimal IBrcaI mRNA expression levels were detected at 8:00 in the morning and at midnight, respectively.  相似文献   

13.
Specimens in the germplasm collection at the U.S. Vegetable Laboratory, United States Department of Agriculture (USDA) in Charleston, SC, were studied to examine phylogenetic relations of the tetraploid accessions inIpomoea sectionBatatas. This collection contains tetraploidsfrom a wide geographic range and most were tentatively identified by the collector asI. trifida. This study shows that corolla and sepal traits may be used to distinguish the tetraploidsfrom known specimens ofI. trifida (diploid) andI. batatas (hexaploid). All but one tetraploid accession examined (CH67.50) had corolla tubes and sepals shaped likeI. batatas and more closely resembled that species thanI. trifida. Use of corolla tube diameter allowed the hexaploidI. batatas and tetraploid accessions to be distinguished fromI. trifida because the corolla tubes were wider immediately above the calyx. Differences in sepal shape were quantified using the angle at the sepal apex. This angle was consistently obtuse in theI. batatas hexaploids and the tetraploids, but was acute in theI. trifida accessions. Due to similarities in sepal and corolla traits, these tetraploids should be reidentified as tetraploidI. batatas, a cytological race of the hexaploid I. batatas (the sweetpotato).  相似文献   

14.
Secondary metabolites, latex/mucilagenous secretions, polysaccharides, and proteins interfere with the extraction of high-quality, restrictable total cellular DNA from sweet potato [Ipomoea batatas (L.) Lamk.] and related species. A method for the DNA extraction is described which overcomes these problems.  相似文献   

15.
甘薯属植物过氧化物酶同工酶分析   总被引:9,自引:0,他引:9  
采用垂直平板聚丙烯酰胺凝胶电泳技术,对23份甘薯属不同倍性材料进行过氧化物酶同工酶酶谱分析。初步结果表明,过氧化物酶同工酶酶带数目与材料倍性无明显相关性;二倍体或四倍体野生种的种间酶谱差异显著;六倍体野生种不同株系间以及六倍体栽培种甘薯的不同品种间酶谱差异较小;但栽培种甘薯与六倍体野生种I.trifida(6x)、四倍体野生种I.littoralis(4x)以及二倍体野生种I.trifida(2x)的酶谱有4条明显共同标记带,表明其间有一定亲缘关系。  相似文献   

16.
DNA content was estimated by flow cytometry in seventeen taxa from the Dilatata, Quadrifaria and Paniculata groups of Paspalum and five synthetic hybrids. Results were compared to known genome constitutions and phylogenetic relationships. DNA 2C-values ranged from 1.24 pg in diploid P. juergensii to 3.79 pg in a hexaploid biotype of P. dilatatum. The I genome of three Quadrifaria diploids is 1.2 to 1.5-fold larger than the J genome of P. juergensii (Paniculata). The 2C-values of the IIJJ tetraploids of the Dilatata group are lower than expected based on putative genome donors. Reduction of genome sizes could have occurred after the formation of the allopolyploids of the Dilatata group. The DNA content of all synthetic hybrids is in accordance with the sum of parental C-values. The interactions driving genome downsizing may operate differently during the transition from diploidy to polyploidy than on subsequent increases in ploidy level.  相似文献   

17.
Proliferating cell nuclear antigen (PCNA) plays critical roles in eukaryotic DNA replication and replication‐associated processes. It is typically encoded by one or two gene copies (pcna) in eukaryotic genomes. Recently reported higher copy numbers of pcna in some dinoflagellates raised a question of how this gene has uniquely evolved in this phylum. Through real‐time PCR quantification, we found a wide range of pcna copy number (2–287 copies) in 11 dinoflagellate species (n = 38), and a strong positive correlation between pcna copy number and genome size (log10–log10 transformed). Intraspecific pcna diverged up to 21% and are dominated by nonsynonymous substitutions, indicating strong purifying selection pressure on and hence functional necessity of this gene. By surveying pcna copy numbers in eukaryotes, we observed a genome size threshold at 4 pg DNA, above which more than two pcna copies are found. To examine whether retrotransposition is a mechanism of pcna duplication, we measured the copy number of retroposed pcna, taking advantage of the 22‐nt dinoflagellate‐specific spliced leader (DinoSL) capping the 5′ end of dinoflagellate nuclear‐encoded mRNAs, which would exist in the upstream region of a retroposed gene copy. We found that retroposed pcna copy number increased with total pcna copy number and genome size. These results indicate co‐evolution of dinoflagellate pcna copy number with genome size, and retroposition as a major mechanism of pcna duplication in dinoflagellates. Furthermore, we posit that the demand of faithful replication and maintenance of the large dinoflagellate genomes might have favored the preservation of the retroposed pcna as functional genes.  相似文献   

18.
  • The ability of plant growth‐promoting rhizobacteria (PGPR) to enhance Lathyrus sativus tolerance to lead (Pb) stress was investigated.
  • Ten consortia formed by mixing four efficient and Pb‐resistant PGPR strains were assessed for their beneficial effect in improving Pb (0.5 mM) uptake and in inducing the host defence system of L. sativus under hydroponic conditions based on various physiological and biochemical parameters.
  • Lead stress significantly decreased shoot (SDW) and root (RDW) dry weight, but PGPR inoculation improved both dry weights, with highest increases in SDW and RDW of plants inoculated with I5 (R. leguminosarum (M5) + P. fluorescens (K23) + Luteibacter sp. + Variovorax sp.) and I9 (R. leguminosarum (M5) + Variovorax sp. + Luteibacter sp. + S. meliloti) by 151% and 94%, respectively. Additionally, inoculation significantly enhanced both chlorophyll and soluble sugar content, mainly in I5 inoculated leaves by 238% and 71%, respectively, despite the fact that Pb decreased these parameters. We also found that PGPR inoculation helps to reduce oxidative damage and enhances antioxidant enzyme activity, phenolic compound biosynthesis, carotenoids and proline content. PGPR inoculation increased Pb uptake in L. sativus, with highest increase in shoots of plants inoculated with I5 and I7, and in roots and nodules of plants inoculated with I1. Moreover, PGPR inoculation enhanced mineral homeostasis for Ca, Cu and Zn under Pb stress, mainly in plants inoculated with I1, I5, I7 and I9.
  • Results of our study suggest the potential of efficient and Pb‐resistant PGPR in alleviating harmful effects of metal stress via activation of various defence mechanisms and enhancing Pb uptake that promotes tolerance of L. sativus to Pb stress.
  相似文献   

19.
20.
The tendency of ectotherms to get larger in the cold (Bergmann clines) has potentially great implications for individual performance and food web dynamics. The mechanistic drivers of this trend are not well understood, however. One fundamental question is to which extent variation in body size is attributed to variation in cell size, which again is related to genome size. In this study, we analyzed body and genome size in four species of marine calanoid copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Paraeuchaeta norvegica, with populations from both south Norwegian fjords and the High Arctic. The Calanus species showed typical interspecific Bergmann clines, and we assessed whether they also displayed similar intraspecific variations—and if correlation between genome size and body size differed between species. There were considerable inter‐ as well as intraspecific variations in body size and genome size, with the northernmost populations having the largest values of both variables within each species. Positive intraspecific relationships suggest a functional link between body and genome size, although its adaptiveness has not been settled. Impact of additional drivers like phylogeny or specific adaptations, however, was suggested by striking divergences in body size – genome size ratios among species. Thus, C. glacialis and C. hyperboreus, had fairly similar genome size despite very different body size, while P. norvegica, of similar body size as C. hyperboreus, had the largest genome sizes ever recorded from copepods. The inter‐ and intraspecific latitudinal body size clines suggest that climate change may have major impact on body size composition of keystone species in marine planktonic food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号