首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Species identification based on the DNA sequence of a fragment of the cytochrome c oxidase subunit I gene in the mitochondrial genome, DNA barcoding, is widely applied to assist in sustainable exploitation of fish resources and the protection of fish biodiversity. The aim of this study was to establish a reliable barcoding reference database of the native ray‐finned fishes in Taiwan. A total of 2993 individuals, belonging to 1245 species within 637 genera, 184 families and 29 orders of ray‐finned fishes and representing approximately 40% of the recorded ray‐finned fishes in Taiwan, were PCR amplified at the barcode region and bidirectionally sequenced. The mean length of the 2993 barcodes is 549 bp. Mean congeneric K2P distance (15.24%) is approximately 10‐fold higher than the mean conspecific one (1.51%), but approximately 1.4‐fold less than the mean genetic distance between families (20.80%). The Barcode Index Number (BIN) discordance report shows that 2993 specimens represent 1275 BINs and, among them, 86 BINs are singletons, 570 BINs are taxonomically concordant, and the other 619 BINs are taxonomically discordant. Barcode gap analysis also revealed that more than 90% of the collected fishes in this study can be discriminated by DNA barcoding. Overall, the barcoding reference database established by this study reveals the need for taxonomic revisions and voucher specimen rechecks, in addition to assisting in the management of Taiwan's fish resources and diversity.  相似文献   

2.
Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree‐based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.  相似文献   

3.
The aim of this work was to evaluate the suitability of selected DNA regions in the barcoding of plants, based on the species belonging to the genus Lamium (Lamiaceae). For this purpose, nine chloroplast barcodes, that is, accD, matK, rbcL, rpoA, rpoB, rpoC1, rpoC2, trnH‐psbA, trnL‐trnF, as well as ITS nuclear region, and intron of mitochondrial nad5 gene were tested. Among the single‐locus barcodes, most effective in the identification of Lamium species was the trnH‐psbA spacer and matK gene. The high level of variability and resolving power was also observed in the case of rpoA and rpoC2 genes. Despite the high interspecies variability of ITS region, it turned out to be inapplicable in Lamium identification. An important disadvantage of ITS as a barcode is a limitation of its use in polyploid plants, samples contaminated with fungal material or samples with partially degraded DNA. We have also evaluated five‐two‐locus and two‐three‐locus barcode regions created from a combination of most effective single loci. The best‐performing barcode combinations were matK + trnH‐psbA and matK + rpoA. Both of them had equally high discriminative power to identify Lamium species.  相似文献   

4.
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well‐supported clusters. Intraspecific Kimura 2‐parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra‐ and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.  相似文献   

5.
Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour‐joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within‐species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51‐fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two‐thirds of the typical fish species recorded for the North Sea.  相似文献   

6.
Discordance between entities revealed by nuclear versus mitochondrial genes is a common phenomenon in evolutionary and taxonomic studies. However, little attention has been paid to analysis of how such discordant entities correspond to traditional species detected through investigation of their morphology, ecology, and distribution. Here, we used one mitochondrial (COI, DNA barcode fragment) and four nuclear (CAD, Ca‐ATPase, arginine kinase, wg) genes to analyze the genetic structure of the taxonomically well‐studied butterfly genus Brenthis (Lepidoptera, Nymphalidae). Analysis of COI revealed multiple diverged allopatric and sympatric mitochondrial lineages within the known Brenthis species hinting at possible presence of unrecognized cryptic species. However, these multiple‐species hypotheses were not supported by further studies of nuclear genes and phenotypic traits. The discovered mitochondrial lineages did not correspond to the clusters revealed by nuclear genes. Simultaneously, we found a complete congruence between (a) traditional species boundaries, (b) clusters recognized by nuclear genes, and (c) clusters identified via cladistic analysis of phenotypic traits (genitalia and wing pattern characters, ecological preferences, and chromosome numbers). We conclude that in case of the genus Brenthis, nuclear genes rather than mtDNA barcodes reveal real species boundaries. Additionally, we suggest to support each DNA barcode‐based taxonomic conclusion by analysis of phased alleles of nuclear genes, avoiding widely used practice of nuclear and mitochondrial genes concatenation without any examination of interaction of these different types of data.  相似文献   

7.
Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A–G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus‐wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on ‘best match’ analysis, the combination of matK+ITS2 was best, while based on ‘all species barcodes’ analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (< 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult.  相似文献   

8.
9.
The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear‐cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH‐psbA and trnL‐F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra‐ and inter‐specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH‐psbA (100%), trnL‐F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH‐psbA and trnL‐F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.  相似文献   

10.
A comprehensive DNA barcoding library is very useful for rapid identification and detection of invasive pest species. We tested the performance of species identification in the economically most damaging group of wood‐boring insects – the bark and ambrosia beetles – with particular focus on broad geographical sampling across the boreal Palearctic forests. Neighbour‐joining and Bayesian analyses of cytochrome oxidase I (COI) sequences from 151 species in 40 genera revealed high congruence between morphology‐based identification and sequence clusters. Inconsistencies with morphological identifications included the discovery of a likely cryptic Nearctic species of Dryocoetes autographus, the possible hybrid origin of shared mitochondrial haplotypes in Pityophthorus micrographus and P. pityographus, and a possible paraphyletic Xyleborinus saxeseni. The first record of Orthotomicus suturalis in North America was confirmed by DNA barcoding. The mitochondrial data also revealed consistent divergence across the Palearctic or Holarctic, confirmed in part by data from the large ribosomal subunit (28S). Some populations had considerable variation in the mitochondrial barcoding marker, but were invariant in the nuclear ribosomal marker. These findings must be viewed in light of the high number of nuclear insertions of mitochondrial DNA (NUMTs) detected in eight bark beetle species, suggesting the possible presence of additional cryptic NUMTs. The occurrence of paralogous COI copies, hybridization or cryptic speciation demands a stronger focus on data quality assessment in the construction of DNA barcoding databases.  相似文献   

11.
We investigated the usefulness of mitochondrial cytochrome c oxidase (COI) DNA barcoding of the genus Bradysia for the detection of immature stages and cryptic species complex. Although the larvae of some species in this genus are agricultural pests, immature stages are rarely identified due to the lack of key morphological characteristics. We constructed partial sequences of the COI gene for 25 species of Bradysia as a first step towards a DNA barcode. Using these data, Bradysia impatiens, B. procera and Bperaffinis were identified from larval specimens collected, respectively, from paprika, ginseng and oak sawdust beds used for cultivating shiitake. Our findings reveal a complex of three species within the Btilicola group. These species were all identified as important pest Bocellaris based on the morphology of male genital structures; however, the interspecific genetic divergence of the COI region was significantly greater (16.1–19.4%) than the intraspecific variation in each species. Therefore, Bocellaris may consist of at least three species. The results demonstrate that COI DNA barcodes are useful for Bradysia species identification.  相似文献   

12.
13.
DNA barcoding facilitates the identification of species and the estimation of biodiversity by using nucleotide sequences, usually from the mitochondrial genome. Most studies accomplish this task by using the gene encoding cytochrome oxidase subunit I (COI; Entrez COX1). Within this barcoding framework, many taxonomic initiatives exist, such as those specializing in fishes, birds, mammals, and fungi. Other efforts center on regions, such as the Arctic, or on other topics, such as health. DNA barcoding initiatives exist for all groups of vertebrates except for amphibians and nonavian reptiles. We announce the formation of Cold Code, the international initiative to DNA barcode all species of these ‘cold‐blooded’ vertebrates. The project has a Steering Committee, Coordinators, and a home page. To facilitate Cold Code, the Kunming Institute of Zoology, Chinese Academy of Sciences will sequence COI for the first 10 specimens of a species at no cost to the steward of the tissues.  相似文献   

14.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

15.
Calanoid copepods play an important role in the pelagic ecosystem making them subject to various taxonomic and ecological studies, as well as indicators for detecting changes in the marine habitat. For all these investigations, valid identification, mainly of sibling and cryptic species as well as early life history stages, represents a central issue. In this study, we compare species identification methods for pelagic calanoid copepod species from the North Sea and adjacent regions in a total of 333 specimens. Morphologically identified specimens were analysed on the basis of nucleotide sequences (i.e. partial mitochondrial cytochrome c oxidase subunit I (COI) and complete 18S rDNA) and on proteome fingerprints using the technology of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). On all three molecular approaches, all specimens were classified to species level indicated by low intraspecific and high interspecific variability. Sequence divergences in both markers revealed a second Pseudocalanus species for the southern North Sea identified as Pseudocalanus moultoni by COI sequence comparisons to GenBank. Proteome fingerprints were valid for species clusters irrespective of high intraspecific variability, including significant differences between early developmental stages and adults. There was no effect of sampling region or time; thus, trophic effect, when analysing the whole organisms, was observed in species‐specific protein mass spectra, underlining the power of this tool in the application on metazoan species identification. Because of less sample preparation steps, we recommend proteomic fingerprinting using the MALDI‐TOF MS as an alternative or supplementary approach for rapid, cost‐effective species identification.  相似文献   

16.
Phylogeny reconstructions based on mtDNA and nDNA have become the standard in studies on relationships between taxa. Difficulties in obtaining material, for example because of small endemic distributions, often lead to gaps in datasets. Collections in natural history museums can provide us with material to fill these gaps, but extracting DNA from historical specimens can be challenging. We used a PCR protocol for small amounts of sample material and high PCR yield on eggs of specimens of the coral‐dwelling gall crab family Cryptochiridae collected in 1984, including material from the eastern Atlantic species Detocarcinus balssi. We obtained DNA sequences from seven older museum specimens using newly developed primers, which we combined with COI sequences from recently collected material. Results show that D. balssi is closest to the Indo‐Pacific species Utinomiella dimorpha and not closely related to one of the other three Atlantic Cryptochiridae species. The remaining newly acquired DNA sequences from museum material cluster with the respective sequences from recently collected specimens.  相似文献   

17.
DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large‐scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next‐generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high‐target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next‐generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10‐mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full‐length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full‐length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next‐generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.  相似文献   

18.
Each holotype specimen provides the only objective link to a particular Linnean binomen. Sequence information from them is increasingly valuable due to the growing usage of DNA barcodes in taxonomy. As type specimens are often old, it may only be possible to recover fragmentary sequence information from them. We tested the efficacy of short sequences from type specimens in the resolution of a challenging taxonomic puzzle: the Elachista dispunctella complex which includes 64 described species with minuscule morphological differences. We applied a multistep procedure to resolve the taxonomy of this species complex. First, we sequenced a large number of newly collected specimens and as many holotypes as possible. Second, we used all >400 bp examine species boundaries. We employed three unsupervised methods (BIN, ABGD, GMYC) with specified criteria on how to handle discordant results and examined diagnostic bases from each delineated putative species (operational taxonomic units, OTUs). Third, we evaluated the morphological characters of each OTU. Finally, we associated short barcodes from types with the delineated OTUs. In this step, we employed various supervised methods, including distance‐based, tree‐based and character‐based. We recovered 658 bp barcode sequences from 194 of 215 fresh specimens and recovered an average of 141 bp from 33 of 42 holotypes. We observed strong congruence among all methods and good correspondence with morphology. We demonstrate potential pitfalls with tree‐, distance‐ and character‐based approaches when associating sequences of varied length. Our results suggest that sequences as short as 56 bp can often provide valuable taxonomic information. The results support significant taxonomic oversplitting of species in the Elachista dispunctella complex.  相似文献   

19.
A 658-bp fragment of mitochondrial DNA from the 5' region of the mitochondrial cytochrome c oxidase 1 (COI) gene has been adopted as the standard DNA barcode region for animal life. In this study, we test its effectiveness in the discrimination of over 300 species of aphids from more than 130 genera. Most (96%) species were well differentiated, and sequence variation within species was low, averaging just 0.2%. Despite the complex life cycles and parthenogenetic reproduction of aphids, DNA barcodes are an effective tool for identification.  相似文献   

20.
Complete plastid genome (plastome) sequences and nuclear ribosomal DNA (nrDNA) regions have been proposed as candidates for the next generation of DNA barcodes for plant species discrimination. However, the efficacy of this approach still lacks comprehensive evaluation. We carried out a case study in the economically important but phylogenetically and taxonomically difficult genus Panax (Araliaceae). We generated a large data set of plastomes and nrDNA sequences from multiple accessions per species. Our data improved the phylogenetic resolution and levels of species discrimination in Panax, compared to any previous studies using standard DNA barcodes. This provides new insights into the speciation, lineage diversification and biogeography of the genus. However, both plastome and nrDNA failed to completely resolve the phylogenetic relationships in the Panax bipinnatifidus species complex, and only half of the species within it were recovered as monophyletic units. The results suggest that complete plastome and ribosomal DNA sequences can substantially increase species discriminatory power in plants, but they are not powerful enough to fully resolve phylogenetic relationships and discriminate all species, particularly in evolutionarily young and complex plant groups. To gain further resolving power for closely related species, the addition of substantial numbers of nuclear markers is likely to be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号