共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Shaobin Wang Yuanjun Zhao Yanhong Du Fahui Tang 《The Journal of eukaryotic microbiology》2019,66(3):447-459
3.
粒毛盘菌属包括晶杯菌科中子囊盘表面具有毛状物,毛状物全表面具有颗粒状纹饰以及外囊盘被结构为矩胞组织的部分种类,种间形态解剖结构多样,研究采用ITS15.8S rDNAITS2序列分析的方法探讨该属种间的系统发育关系。在供试的粒毛盘菌15个分类单元中,14个以89%的支持强度值相聚在一起,其中Lachnum clandestinum与 L. fuscescens关系最近,其支持强度值为100%;其次为L. controversum 与L. spartinae,其支持强度值为97%;而姊妹群L. euterpes,L. pteridophyllum,L. singerianum和L. lushanense彼此关系较远,其支持强度值均小于50%;L. sclerotii位于系统发育树的最外侧,为供试15个分类单元中距离最远的一个,结果表明粒毛盘菌属可能是多起源的。 相似文献
4.
Helena David Aitor Laza‐Martínez Koldo García‐Etxebarria Pilar Riobó Emma Orive 《Journal of phycology》2014,50(4):718-726
Benthic Prorocentrum species can produce toxins that adversely affect animals and human health. They are known to co‐occur with other bloom‐forming, potentially toxic, benthic dinoflagellates of the genera Ostreopsis, Coolia, and Gambierdiscus. In this study, we report on the presence of P. elegans M.Faust and P. levis M.A.Faust, Kibler, Vandersea, P.A. Tester & Litaker from the southeastern Bay of Biscay. Sampling was carried out in the Summer‐Autumn 2010–2012 along the Atlantic coast of the Iberian Peninsula, but these two species were only found in the northeastern part of the Peninsula. Strains were isolated from macroalgae collected from rocky‐shore areas bordering accessible beaches. Morphological traits of isolated strains were analyzed by LM and SEM, whereas molecular analyses were performed using the LSU and internal transcribed spacer (ITS)1‐5.8S‐ITS2 regions of the rDNA. A bioassay with Artemia fransciscana and liquid chromatography–high‐resolution mass spectrometry analyses were used to check the toxicity of the species, whose results were negative. The strains mostly corresponded to their species original morphological characterization, which is supported by the phylogenetic analyses in the case of P. levis, whereas for P. elegans, this is the first known molecular characterization. This is also the second known report of P. elegans. 相似文献
5.
Machiko Yamada Mayuko Otsubo Yuki Tsutsumi Chiaki Mizota Yuka Nakamura Kazuya Takahashi Mitsunori Iwataki 《Phycological Research》2017,65(3):217-225
Small subunit (SSU) and large subunit (LSU) rDNA sequences have been commonly used to delineate the taxonomy and biogeography of the planktonic diatom genus Skeletonema, but the genes occur as multiple copies and are therefore not suitable for barcoding purposes. Here, we analyzed phylogenetic relationships of Skeletonema using the mitochondrial‐encoded cytochrome c oxidase I gene (cox1), as well as partial LSU rDNA (D1–D3) and SSU rDNA, to identify the factors that define species and to evaluate the utility of these three markers for this taxon. Twelve Skeletonema species were divided into six clades, I–VI, each of which comprised the same species by the three markers: clades I (S. japonicum, S. grethae, S. pseudocostatum, and S. tropicum), II (S. menzelii), III (S. dohrnii and S. marinoi), IV (S. costatum, S. potamos, and S. subsalsum), V (S. grevillei), and VI (S. ardens). However, the branching order among these clades was incongruent among the markers. In clade III, six S. marinoi strains had identical cox1 sequences. These S. marinoi strains branched along with S. dohrnii, except for strains from the Gulf of Naples, with high support in cox1. Species delimitation between S. dohrnii and S. marinoi was therefore not supported. In clade IV, S. costatum and S. subsalsum were robustly clustered, with S. potamos as a sister clade in the cox1 tree, not in the LSU and SSU trees. In clade II, cox1 also confirmed that S. menzelii includes three subclades potentially distinguishable from each other by morphological features. Cox1 proved to be the most useful marker for the identification of Skeletonema species because it gave a tree with highly supported clades, has sufficient variation within and among species, encodes a protein in a single copy, and requires relatively few primers. 相似文献
6.
Hua Zhang Zhen Wu Jingyi Cen Yang Li Hualong Wang Songhui Lu 《Phycological Research》2016,64(4):259-273
Species of the marine benthic dinoflagellate genus Gambierdiscus are the principal cause of Ciguatera fish poisoning. This genus has been recorded from tropical to temperate oceans, although Gambierdiscus species have rarely been found in Chinese waters. Our work revealed the morphological and genetic characteristics of three potentially toxic Gambierdiscus species observed in the temperate to subtropical waters of China. The fine thecal morphology was determined based on light microscopy and scanning electron microscopy analyses, and these species were also characterized by sequencing the D1–D3 and D8–D10 regions of the LSU rDNA. The morphological and genetic data indicated that these three Gambierdiscus species were G. pacificus, G. australes and G. caribaeus. This work provides the first report of these species in Chinese waters, which increases the known species distribution of this genus. 相似文献
7.
Jan Kollr Eveline Pinseel Pieter Vanormelingen Aloisie Poulí
kov Caroline Souffreau Petr Dvok Wim Vyverman 《Journal of phycology》2019,55(2):365-379
Diatoms are one of the most abundant and arguably the most species‐rich group of protists. Diatom species delimitation has often been based exclusively on the recognition of morphological discontinuities without investigation of other lines of evidence. Even though DNA sequences and reproductive experiments have revealed several examples of (pseudo)cryptic diversity, our understanding of diatom species boundaries and diversity remains limited. The cosmopolitan pennate raphid diatom genus Pinnularia represents one of the most taxon‐rich diatom genera. In this study, we focused on the delimitation of species in one of the major clades of the genus, the Pinnularia subgibba group, based on 105 strains from a worldwide origin. We compared genetic distances between the sequences of seven molecular markers and selected the most variable pair, the mitochondrial cox1 and nuclear encoded LSU rDNA, to formulate a primary hypothesis on the species limits using three single‐locus automated species delimitation methods. We compared the DNA‐based primary hypotheses with morphology and with other available lines of evidence. The results indicate that our data set comprised 15 species of the P. subgibba group. The vast majority of these taxa have an uncertain taxonomic identity, suggesting that several may be unknown to science and/or members of (pseudo)cryptic species complexes within the P. subgibba group. 相似文献
8.
We analyzed the phylogenetic relationships of 49 specimens comprising 14 morphologically similar species of Pucciniastrum distributed in Japan based on the sequence data of the large subunit rDNA (D1/D2), 5.8S rDNA, and internal transcribed spacer
(ITS) regions. Neighbor-joining and parsimony analyses generated six major groups for both the D1/D2 and ITS regions. Pucciniastrum circaeae and P. epilobii formed a single group. P. hydrangeae-petiolaris, P. coryli, P. fagi, P. hikosanense, P. tiliae, and P. boehmeriae were each a distinct clade, and P. fagi formed a close relationship with P. hikosanense. However, these analyses did not support the monophyly of the following species: P. kusanoi, P. actinidiae, P. corni, P. styracinum, P. yoshinagai, and P. miyabeanum.
Contribution no. 201, Laboratory of Plant Parasitic Mycology, Graduate School of Life and Environmental Sciences, University
of Tsukuba, Japan 相似文献
9.
The dinoflagellate subfamily Diplopsalidoideae encompasses 11 genera whose plate patterns show a large diversity. In a recently published molecular phylogeny (Liu et al. 2015) some of these genera (e.g. Diplopsalis, Diplopelta) are polyphyletic, suggesting that further subdivision of these genera is needed. Here we established the cyst‐theca relationship of Diplopsalis caspica by incubating cysts collected from the East China Sea. Cells of D. caspica display a plate formula of Po, X, 3′, 1a, 6″, 3c+t, ?4s, 5″′, 1″″, characterized by a small, parallelogrammic anterior intercalary plate (1a) located in the middle of the dorsal part of the epitheca. The cysts are spherical and smooth‐walled with a theropylic archeopyle. In addition, we obtained four large subunit ribosomal DNA (LSU rDNA) sequences from the germinated motile cells by single‐cell polymerase chain reaction. Strains of D. caspica from the marine environment of the East China Sea differ at 0–2 positions of LSU rDNA sequences from that of lacustrine strains from NE China. In the molecular phylogeny, D. caspica was close to Lebouraia pusilla but distant from D. lenticula, the type species of Diplopsalis. Our results support the systematic importance of plate 1a, and therefore D. caspica was transferred to a new genus, Huia. The conservative LSU rDNA sequences in H. caspica suggest that the marine‐freshwater transition occurred recently. 相似文献
10.
Qinghua Wang Huiyin Song Xudong Liu Benwen Liu Zhengyu Hu Guoxiang Liu 《Journal of phycology》2019,55(6):1290-1305
The genus Coelastrella was established by Chodat (Bull. Soc. Bot. Geneve, 13 [1922] 66), and was characterized as being unicellular or in few‐celled aggregations with many longitudinal ribs on the cell wall. Many species of this genus showed strong ability to accumulate carotenoids and oils, so they have recently attracted much attention from researchers due to its potential applicability in the energy and food industries. In this study, a total of 23 strains of Coelastrella were sampled from China, and three new species and two new varieties were described: C. thermophila sp. nov., C. yingshanensis sp. nov., C. tenuitheca sp. nov., C. thermophila var. globulina var. nov., C. rubescens var. oocystiformis var. nov. Besides 18S rDNA and ITS2 sequences, we have newly sequenced the tufA gene marker for this taxon. Phylogenetic analysis combined with morphological studies revealed four morphotypes within the Coelastrella sensu lato clade, which contained the morphotype of original Coelastrella, original Scotiellopsis, Asterarcys, and morphotype of C. vacuolata and C. tenuitheca sp. nov. The relationships between morphological differences and phylogenic diversity based on different markers were discussed. Our results support that 18S rDNA was too conserved to be used a species‐specific or even a genus‐specific marker in this clade. The topology of tufA gene‐based phylogenetic tree had a better match with the morphological findings. 相似文献
11.
Ilya A. Udalov Won Je Lee Kirill Lotonin Alexey Smirnov 《The Journal of eukaryotic microbiology》2020,67(1):132-139
A new marine species of naked lobose amoebae Pseudoparamoeba garorimi n. sp. (Amoebozoa, Dactylopodida) isolated from intertidal marine sediments of Garorim Bay, Korea was studied with light and transmission electron microscopy. This species has a typical set of morphological characters for a genus including the shape of the locomotive form, type of subpseudopodia and the tendency to form the single long waving pseudopodium in locomotion. Furthermore, it has the same cell surface structures as were described for the type species, Pseudoparamoeba pagei: blister‐like glycostyles with hexagonal base and dome‐shaped apex; besides, cell surface bears hair‐like outgrowths. The new species described here lacks clear morphological distinctions from the two other Pseudoparamoeba species, but has considerable differences in the 18S rDNA and COX1 gene sequences. Phylogenetic analysis based on 18S rDNA placed P. garorimi n. sp. at the base of the Pseudoparamoeba clade with high PP/BS support. The level of COX1 sequence divergence was 22% between P. garorimi n. sp. and P. pagei and 25% between P. garorimi n. sp. and P. microlepis. Pseudoparamoeba species are hardly distinguishable by morphology alone, but display clear differences in 18S rDNA and COX1 gene sequences. 相似文献
12.
Haifeng Gu Zhaohe Luo Kenneth Neil Mertens Andrea Michelle Price Robert Eugene Turner Nancy N. Rabalais 《Journal of phycology》2015,51(5):990-999
In the present study, we redescribed Gyrodinium resplendens through incubation of process bearing cysts extracted from sediment collected in the northern Gulf of Mexico. The morphology and ultrastructure of the motile stage and cyst stage were examined using light microscopy, scanning electron microscopy, and transmission electron microscopy and this revealed that the species should be transferred to the genus Barrufeta. This genus differs from other gymnodinioid genera in possessing a Smurf‐cap apical structure complex (ASC) and currently encompasses only one species, Barrufeta bravensis. B. resplendens shows a Smurf‐cap ASC that consists of three rows of elongated vesicles with small knobs in the middle one. B. resplendens is very similar to B. bravensis in cell morphology, but can be separated using the ultrastructure such as the shape and location of nucleus and pyrenoids, which highlights the importance of ultrastructure at inter‐specific level in the genus Barrufeta. The unique cysts of B. resplendens are brown and process bearing, and have a tremic archeopyle with a zigzag margin on the dorsal side of the epicyst, and not polar as in cysts of Polykrikos. The cysts do not survive the palynological treatment used here and probably have a wide distribution. Maximum‐likelihood and Bayesian inference were carried out based on partial large subunit ribosomal DNA (LSU rDNA) sequences. Molecular phylogeny supports that the genus Barrufeta is monophyletic, and that the genus Gymnodinium is polyphyletic. Our results suggest that details of the ASC together with ultrastructure are potential features to subdivide the genus Gymnodinium. 相似文献
13.
14.
Historically, species in Volvocales were classified based primarily on morphology. Although the taxonomy of Chlamydomonas has been re‐examined using a polyphasic approach including molecular phylogeny, that of Chlorococcum (Cc.), the largest coccoid genus in Volvocales, has yet to be reexamined. Six species thought to be synonymous with the oil‐producing alga Cc. oleofaciens were previously not confirmed by molecular phylogeny. In this study, seven authentic strains of Cc. oleofaciens and its putative synonyms, along with 11 relatives, were examined based on the phylogeny of the 18S ribosomal RNA (rRNA) gene, comparisons of secondary structures of internal transcribed spacer 1 (ITS1) and ITS2 rDNA, and morphological observations by light microscopy. Seven 18S rRNA types were recognized among these strains and three were distantly related to Cc. oleofaciens. Comparisons of ITS rDNA structures suggested possible separation of the remaining four types into different species. Shapes of vegetative cells, thickness of the cell walls in old cultures, the size of cells in old cultures, and stigma morphology of zoospores also supported the 18S rRNA grouping. Based on these results, the 18 strains examined were reclassified into seven species. Among the putative synonyms, synonymy of Cc. oleofaciens, Cc. croceum, and Cc. granulosum was confirmed, and Cc. microstigmatum, Cc. rugosum, Cc. aquaticum, and Cc. nivale were distinguished from Cc. oleofaciens. Furthermore, another related strain is described as a new species, Macrochloris rubrioleum sp. nov. 相似文献
15.
16.
从大叶醉鱼草的叶子中分离得到一株内生真菌LL3026,以卤虫模型测稀释后发酵液的杀虫活性,结果表明LL3026发酵液杀虫活性较强,且温度、光照及紫外照射对LL3026发酵液杀虫活性影响不显著;采用分子生物学方法对LL3026菌株rDNA的ITS基因(ITS-5.8S rDNA)进行PCR扩增、测序,构建系统发育树。ITS基因显示其属于刺盘孢属真菌。 相似文献
17.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales. 相似文献
18.
A detailed ultrastructural analysis of the type species of Gyrodinium, G. spirale, was made based on cells collected from Skagerrak and southern Kattegat (Denmark). This material is considered very similar to the type material studied by Bergh from southern Kattegat. The analysis revealed many characters typical for dinoflagellates as well as a number of previously undescribed features. Here, emphasis was given to a three-dimensional configuration of the flagellar apparatus, the surface ridges, and the nuclear capsule. The latter had a rather complex ultrastructure consisting of two wall-like layers surrounded by membranes, with nuclear pores restricted to globular invaginations of these layers. To overcome difficulties with culturing of many auto- and heterotrophic dinoflagellates, we designed a specific reverse primer to amplify ca. 1800 base pairs of nuclear-encoded LSU rDNA. Using this approach, LSU rDNA sequences were determined from three heterotrophic species of Gyrodinium, including the type species. Using other alveolates (i.e. ciliates and Apicomplexa) as outgroup species, phylogenetic analyses based on Maximum Likelihood, Maximum Parsimony, and Neighbor-Joining supported Gyrodinium as a separate lineage. Unfortunately, the nearest sister group to Gyrodinium could not be established due to low bootstraps support for the deep branching pattern. 相似文献
19.
Brady R. Cunningham Matthew J. Greenwold Eric M. Lachenmyer Kristin M. Heidenreich Abigail C. Davis Jeffry L. Dudycha Tammi L. Richardson 《Journal of phycology》2019,55(3):552-564
Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr‐PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr‐PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr‐PE 545, in a clade with PC‐containing Chroomonas species. A discriminant analysis‐based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell?1, the wavelength of PBP maximal absorption, and habitat. Non‐PBP pigments (alloxanthin, chl‐a, chl‐c2, α‐carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade‐offs in investments in PBPs vs. chlorophylls (a +c2). 相似文献
20.
Katia Sciuto Louise A. Lewis Elie Verleyen Isabella Moro Nicoletta La Rocca 《Journal of phycology》2015,51(6):1172-1188