首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted that selection for resistance to grazing by protists has contributed to the evolution of Legionella pneumophila as a pathogen. Grazing resistance is becoming more generally recognized as having an important role in the ecology and evolution of bacterial pathogenesis. However, selection for grazing resistance presupposes the existence of protist grazers that provide the selective pressure. To determine whether there are protists that graze on pathogenic Legionella species, we investigated the existence of such organisms in a variety of environmental samples. We isolated and characterized diverse protists that graze on L. pneumophila and determined the effects of adding L. pneumophila on the protist community structures in microcosms made from these environmental samples. Several unrelated organisms were able to graze efficiently on L. pneumophila. The community structures of all samples were markedly altered by the addition of L. pneumophila. Surprisingly, some of the Legionella grazers were closely related to species that are known hosts for L. pneumophila, indicating the presence of unknown specificity determinants for this interaction. These results provide the first direct support for the hypothesis that protist grazers exert selective pressure on Legionella to acquire and retain adaptations that contribute to survival, and that these properties are relevant to the ability of the bacteria to cause disease in people. We also report a novel mechanism of killing of amoebae by one Legionella species that requires an intact Type IV secretion system but does not involve intracellular replication. We refer to this phenomenon as ‘food poisoning''.  相似文献   

2.
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires'' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae''s immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.  相似文献   

3.
《Journal of molecular biology》2019,431(21):4321-4344
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome–lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.  相似文献   

4.
Legionnaires' disease is an emerging, severe, pneumonia‐like illness caused by the Gram‐negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication. Here, we investigate three L. pneumophila genes with high similarity to the Escherichia coli K+ transporters. These three genes were expressed by L. pneumophila and have been designated kupA, kupB and kupC. Investigation using the L. pneumophila kup mutants revealed that kupA is involved in K+ acquisition during axenic growth. The kupA mutants replicated efficiently in rich axenic media, but poorly in a chemically defined medium. The kupA mutants were defective in the recruitment of polyubiquitinated proteins to the Legionella‐containing vacuole that is formed in macrophages and displayed an intracellular multiplication defect during the replication in Acanthamoeba castellanii and in mouse macrophages. We found that bafilomycin treatment of macrophages was able to rescue the growth defects of kupA mutants, but itdid not influence the replication of wild‐type bacteria. The defects identified in kupA mutants of L. pneumophila were complemented by the expression E. coli trkD/Kup gene in trans, a bona fide K+ transporter encoded by E. coli. Collectively, our data indicate that KupA is a functional K+ transporter expressed by L. pneumophila that facilitates the bacterial replication intracellularly and in nutrient‐limited conditions.  相似文献   

5.
This study documents, for the first time, the abundance and species composition of protist assemblages in Arctic sea ice during the dark winter period. Lack of knowledge of sea-ice assemblages during the dark period has left questions about the retention and survival of protist species that initiate the ice algal bloom. Sea-ice and surface water samples were collected between December 27, 2007 and January 31, 2008 within the Cape Bathurst flaw lead, Canadian Beaufort Sea. Samples were analyzed for protist identification and counts, chlorophyll (chl) a, and total particulate carbon and nitrogen concentrations. Sea-ice chl a concentrations (max. 0.27 μg l−1) and total protist abundances (max. 4 × 103 cells l−1) were very low, indicating minimal retention of protists in the ice during winter. The diversity of winter ice protists (134 taxa) was comparable to spring ice assemblages. Pennate diatoms dominated the winter protist assemblage numerically (averaging 77% of total protist abundances), with Nitzschia frigida being the most abundant species. Only 56 taxa were identified in surface waters, where dinoflagellates were the dominant group. Our results indicate that differences in the timing of ice formation may have a greater impact on the abundance than structure of protist assemblages present in winter sea ice and at the onset of the spring ice algal bloom.  相似文献   

6.
Symbiotic protists play important roles in the wood digestion of lower termites. Previous studies showed that termites generally possess host-specific flagellate communities. The genus Reticulitermes is particularly interesting because its unique assemblage of gut flagellates bears evidence for transfaunation. The gut fauna of Reticulitermes species in Japan, Europe, and North America had been investigated, but data on species in China are scarce. For the first time, we analyzed the phylogeny of protists in the hindgut of five Reticulitermes species in China. A total of 22 protist phylotypes were affiliated with the family Trichonymphidae, Teranymphidae, Trichomonadidae, and Holomastigotoididae (Phylum Parabasalia), and 45 protist phylotypes were affiliated with the family Pyrsonymphidae (Phylum Preaxostyla). The protist fauna of these five Reticulitermes species is similar to those of Reticulitermes species in other geographical regions. The topology of Trichonymphidae subtree was similar to that of Reticulitermes tree. All Preaxostyla clones were affiliated with the genera Pyrsonympha and Dinenympha (Order Oxymonadida) as in the other Reticulitermes species. The results of this study not only add to the existing information on the flagellates present in other Reticulitermes species but also offer the opportunity to test the hypotheses for the coevolution of symbiotic protists with their host termites.  相似文献   

7.
乙酰化修饰是由乙酰基转移酶、去乙酰化酶介导的可逆的蛋白质翻译后修饰。其中,乙酰基转移酶将乙酰辅酶A的乙酰基团转移至底物蛋白的氨基酸残基,而乙酰基团的去除由去乙酰化酶完成。乙酰化修饰参与许多基本生物学过程的调节作用,越来越多的研究表明,蛋白质乙酰化修饰在病原菌的致病过程中具有重要作用。病原菌,如引起非典型性肺炎的嗜肺军团菌,可以通过分泌具有乙酰基转移酶活性的效应蛋白靶向宿主细胞信号通路的关键蛋白质因子,干扰宿主细胞信号通路及免疫反应。本文主要从嗜肺军团菌的致病机制、乙酰化修饰及乙酰化修饰在病原体致病过程中的调控作用进行综述,突出已知的乙酰化毒力蛋白的例子,并讨论它们如何影响与宿主的相互作用,为理解乙酰化修饰在嗜肺军团菌致病过程中的作用机制提供参考。  相似文献   

8.
Legionella is a parasite of eukaryotic cells, able to survive and replicate in a wide range of protozoan hosts. It can also infect humans as an opportunistic pathogen, primarily by interaction with alveolar macrophages. These bacteria can cause life-threatening pneumonia, especially in immunocompromised individuals. However, most infections triggered by Legionella are cleared by an efficient host immune system. The protective immune responses against Legionella are complex and multifaceted, involving many components of the immune system. Recognition of such components as LPS, flagellum, and peptidoglycan of L. pneumophila by the TLRs, which orchestrates the innate immune responses to Legionella, lays an important role in activation of monocytes and alveolar macrophages and, thus, in inhibition of intracellular proliferation of bacteria. MyD88-dependent signaling pathways are important for host protection against Legionella.  相似文献   

9.
To clarify the structure of microbial food webs in groundwater, knowledge about the protist diversity and feeding strategies is essential. We applied cultivation‐dependent approaches and molecular methods for further understanding of protist diversity in groundwater. Groundwater was sampled from a karstified aquifer located in the Thuringian Basin (Thuringia, Germany). Cultivable protist abundance estimated up to 8,000 cells/L. Eleven flagellates, 10 naked amoebae, and one ciliate morpho‐species were detected in groundwater enrichment cultures. Most of the flagellates morpho‐species, typically < 10 μm, were sessile or free swimming suspension feeders, e.g., Spumella spp., Monosiga spp., and mobile, surface‐associated forms that grasp biofilms, e.g., Bodo spp. Naked amoebae, typically < 35 μm, that grasp biofilms were represented by, e.g., Vahlkampfia spp., Vannella spp., and Hartmanella spp. The largest fraction of the 18S rRNA gene sequences was affiliated with Spumella‐like Stramenopiles. Besides, also sequences affiliated with fungi and metazoan grazers were detected in clone libraries of the groundwater. We hypothesize that small sized protist species take refuge in the structured surface of the fractures and fissures of the karstified aquifer and mainly feed on biofilm‐associated or suspended bacteria.  相似文献   

10.
Protists, the most diverse eukaryotes, are largely considered to be free‐living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High‐throughput sequencing (HTS) approaches now commonly replace cultivation‐based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free‐living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co‐amplification of metazoan‐associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over‐represented, while those of most amoebae and flagellates were under‐represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free‐living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co‐extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free‐living soil protist communities.  相似文献   

11.
We investigated whether nematodes contribute to the persistence, differentiation and amplification of Legionella species in soil, an emerging source for Legionnaires' disease. Here we show that Legionella spp. colonize the intestinal tracts of Caenorhabditis nematodes leading to worm death. Susceptibility to Legionella is influenced by innate immune responses governed by the p38 mitogen‐activated protein kinase and insulin/insulin growth factor‐1 receptor signalling pathways. We also show that L. pneumophila colonizes the intestinal tract of nematodes cultivated in soil. To distinguish between transient infection and persistence, plate‐fed and soil‐extracted nematodes‐fed fluorescent strains of L. pneumophila were analysed. Bacteria replicated within the nematode intestinal tract, did not invade surrounding tissue, and were excreted as differentiated forms that were transmitted to offspring. Interestingly, the ultrastructural features of the differentiated bacterial forms were similar to cyst‐like forms observed within protozoa, amoeba and mammalian cell lines. While intestinal colonization of L. pneumophila dotA and icmT mutant strains did not alter the survival rate of nematodes in comparison to wild‐type strains, nematodes colonized with the dot/icm mutant strains exhibited significantly increased levels of germline apoptosis. Taken together, these studies show that nematodes may serve as natural hosts for these organisms and thereby contribute to their dissemination in the environment and suggest that the remarkable ability of L. pneumophila to subvert host cell signalling and evade mammalian immune responses evolved through the natural selection associated with cycling between protozoan and metazoan hosts.  相似文献   

12.
The greater wax moth Galleria mellonella has been exploited worldwide as an alternative model host for studying pathogenicity and virulence factors of different pathogens, including Legionella pneumophila, a causative agent of a severe form of pneumonia called Legionnaires' disease. An important role in the insect immune response against invading pathogens is played by apolipophorin III (apoLp-III), a lipid- and pathogen associated molecular pattern-binding protein able to inhibit growth of some Gram-negative bacteria, including Legionella dumoffii. In the present study, anti-L. pneumophila activity of G. mellonella apoLp-III and the effects of the interaction of this protein with L. pneumophila cells are demonstrated. Alterations in the bacteria cell surface occurring upon apoLp-III treatment, revealed by Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy, are also documented. ApoLp-III interactions with purified L. pneumophila LPS, an essential virulence factor of the bacteria, were analysed using electrophoresis and immunoblotting with anti-apoLp-III antibodies. Moreover, FTIR spectroscopy was used to gain detailed information on the type of conformational changes in L. pneumophila LPS and G. mellonella apoLp-III induced by their mutual interactions. The results indicate that apoLp-III binding to components of bacterial cell envelope, including LPS, may be responsible for anti-L. pneumophila activity of G. mellonella apoLp-III.  相似文献   

13.
A total of 25 gyrB gene sequences from 20 Legionella pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were obtained and analyzed, and a multiplex PCR for the simultaneous detection of Legionella bozemanae, Legionella longbeachae, Legionella micdadei and Legioenella pneumophila, and two single PCRs for the differentiation of L. pneumophila subsp. pneumophila and L. pneumophila subsp. fraseri were established. The multiplex PCR method was shown to be highly specific and reproducible when tested against 41 target strains and 17 strains of other bacteria species. The sensitivity of the multiplex PCR was also analyzed and was shown to detect levels as low as 1 ng of genomic DNA or 10 colony-forming units (CFUs) per milliliter in mock water samples. Sixty-three air conditioner condensed water samples from Shanghai City were examined, and the result was validated using 16S rRNA sequencing. The data reported here demonstrate that the multiplex PCR method described is efficient and convenient for the detection of Legionella species in water samples. Twenty L. pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were used for the validation of the two L. pneumophila subspecies-specific PCR methods, and the results indicated that the two PCR methods were both highly specific and convenient for the identification of L. pneumophila at the subspecies level.  相似文献   

14.
Changes in phagocytic activity and nodulation in the greater wax moth, Galleria mellonella (L.) (Lepidoptera: Pyralidae), were examined after treatment with the culture fluid of the entomopathogenic fungus Nomuraea rileyi SH1. When isolated hemocytes of G. mellonella were incubated with the conidia of N. rileyi in vitro, the rates of phagocytosis increased at 4 h after incubation but decreased subsequently. On the contrary, the rates of phagocytosis of isolated hemocytes decreased by 80% after 24 h preincubation with the fungal culture fluid (1/200, 1/100 dilutions). Levels of inhibition of phagocytic activity by the culture fluid depended on dilutions used. Galleria mellonella larvae showed a peak of nodulation at 4 h after injection with conidia. The percentage of nodules in hemolymph did not decrease by preinjection with the culture fluid, whereas the percentage of nodule‐containing conidia decreased, depending on the injected fluid. However, phagocytosis and nodulation in G. mellonella did not change after treatment of the culture fluid with proteinase K, indicating that the culture fluid contained proteinaceous immunosuppressive factors. Electrophoretic analysis of the culture fluid and not the fresh medium without culturing the fungus exhibited protein bands. Therefore, N. rileyi possibly secretes toxic proteins that impair cellular immune responses in G. mellonella larvae.  相似文献   

15.
Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133‐day‐long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S. marcescens evolved at harsh (80 g/L) and extreme (100 g/L) salt conditions had clearly improved salt tolerance than those evolved in the other three treatments (ancestral conditions, nonsaline conditions, and fluctuating salt conditions). Evolutionary theories suggest that fastest evolutionary changes could be observed in intermediate selection pressures. Therefore, we originally hypothesized that extreme conditions, such as our 100 g/L salinity treatment, could lead to slower adaptation due to low population sizes. However, no evolutionary differences were observed between populations evolved in harsh and extreme conditions. This suggests that in the study presented here, low population sizes did not prevent evolution in the long run. On the whole, the adaptive potential observed here could be important for the transition of pathogenic S. marcescens bacteria from human‐impacted freshwater environments, such as wastewater treatment plants, to marine habitats, where they are known to infect and kill corals (e.g., through white pox disease).  相似文献   

16.
Legionella pneumophila, the causative agent of Legionnaires’ disease and related pneumonias, infects, replicates within and eventually kills human macrophages. A key feature of the intracellular lifestyle is the ability of the organism to replicate within a specialized phagosome which does not fuse with Iysosomes or acidify. Avirulent mutants that are defective in intracellular multiplication and host-cell killing are unable to prevent phagosome–Iysosome fusion. In a previous study, a 12kb fragment of the L. pneumophila genome containing the icm locus (intracellular multiplication) was found to enable the mutant bacteria to prevent phagosome-Iysosome fusion, to multiply intracellularly and to kill human macrophages. The complemented mutant also regained the ability to produce lethal pneumonia in guinea-pigs. In order to gain information about how L. pneumophila prevents phagosome-Iysosome fusion and alters other intracellular events, we have studied the region containing the icm locus. This locus contains four genes, icmWXYZ, which appear to be transcribed from a single promoter to produce a 2.1–2.4kb mRNA. The deduced amino acid sequences of the Icm proteins do not exhibit significant similarity to other proteins of known sequence, suggesting that they may carry out novel functions. The icmX gene encodes a product with an apparent signal sequence suggesting that it is a secreted protein. The icmWXYZ genes are located adjacent to and on the opposite strand from the dot gene, which is also required for intracellular multiplication and the ability of L. pneumophila to modify organelle traffic in human macrophages. Five L. pneumophila Icm mutants that had been generated with transposon Tn903dIIlacZ were found to have Inserted the transposon within the icmX, icmY, icmZ and dot genes, confirming their role in the ability of the organism to multiply intracellularly.  相似文献   

17.
18.
Although mutualistic associations between animals and microbial symbionts are widespread in nature, the mechanisms that have promoted their evolutionary persistence remain poorly understood. A vertical mode of symbiont transmission (from parents to offspring) is thought to ensure partner fidelity and stabilization, although the efficiency of vertical transmission has rarely been investigated, especially in cases where hosts harbour a diverse microbial community. Here we evaluated vertical transmission rates of cellulolytic gut oxymonad and parabasalid protists in the wood‐feeding termite Reticulitermes grassei. We sequenced amplicons of the 18S rRNA gene of protists from 24 colonies of R. grassei collected in two populations. For each colony, the protist community was characterized from the gut of 14 swarming reproductives and from a pool of 10 worker guts. A total of 98 operational taxonomic units belonging to 13 species‐level taxa were found. The vertical transmission rate was estimated for each protist present in a colony based on its frequency among the reproductives. The results revealed that transmission rates were high, with an average of 0.897 (±0.164) per protist species. Overall, the protist community did not differ between reproductive sexes, suggesting that both the queen and the king could contribute to the gut microbiota of the offspring. A positive relationship between the transmission rate of protists and their prevalence within populations was also detected. However, transmission rates alone do not explain the prevalence of protists. In conclusion, these findings reveal key forces behind a conserved, multispecies mutualism, raising further questions on the roles of horizontal transfer and negative selection in shaping symbiont prevalence.  相似文献   

19.
For nearly 20 years, it was believed that Legionella pneumophila does not produce siderophores. Yet, we have now determined that L. pneumophila secretes a siderophore (legiobactin) that is detectable by the CAS assay. We have optimized conditions for legiobactin expression, shown its biological activity, and found genes (lbtAB) involved in its production and secretion. LbtA is homologous with siderophore synthetases from E. coli (aerobactin), Sinorhizobium (rhizobactin), and Bordetella (alcaligin), while LbtB is a member of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtAB produce 40–70% less CAS reactivity. The lbtA mutant is also defective for growth in deferrated media containing citrate, indicating that legiobactin is required in conditions of severe iron limitation. lbtAB mutants grow normally in macrophages and amoebae host cells as well as within the lungs of mice. L. pneumophila does express lbtA in macrophages, suggesting that legiobactin has a dispensable role in infection. Legiobactin is iron repressed and does not react in the Csáky and Arnow assays. Anion-exchange HPLC has been used to purify legiobactin, and thus far, structural analysis suggests that the molecule is similar but not identical to rhizobactin, rhizoferrin, and alcaligin. The residual CAS reactivity present in supernatants of the lbtAB mutants suggests that L. pneumophila might produce a second siderophore. Besides siderophores, we have determined that ferrous iron transport, encoded by feoB, is critical for L. pneumophila growth in low-iron conditions, in host cells, and in the mammalian lung. Some of our other studies have discovered a critical, yet undefined, role for the L. pneumophila cytochrome c maturation locus in low-iron growth, intracellular infection, and virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号