首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP‐ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP‐ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP‐ribose) polymerase inhibition suppressed H/R‐induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R‐treated cells. Poly(ADP‐ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R‐induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP‐ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R‐induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.  相似文献   

2.
Oxidative stress injury is involved in many cardiovascular diseases, like hypertension and myocardial infarction. Ubiquitination is a ubiquitous protein post‐translational modification that controls a wide range of biological functions and plays a crucial role in maintaining the homeostasis of cells in physiology and disease. Many studies have shown that oxidative stress damage is inextricably linked to ubiquitination. We demonstrate that Smurf2, an E3 ubiquitinated ligase, is involved in HUVEC apoptosis induced by oxidative stress to alleviate H2O2‐induced reactive oxygen species (ROS) production and the apoptosis of human umbilical vein endothelial cells (HUVECs). At the same time, we found that Smurf2 can bind the poly(ADP‐ribose) polymerase‐1(PARP1), and the interaction is enhanced under the stimulation of oxidative stress. We further study and prove that Smurf2 can promote PARP1 ubiquitination and degradation. Collectively, we demonstrate Smurf2 degradation of overactivated PARP1 by ubiquitin‐proteasome pathway to protect HUVEC and alleviate oxidative stress injury.  相似文献   

3.
Several biological effects of haem oxygenase (HO)‐1, including anti‐inflammatory, antiapoptotic and antioxidative properties were reported; however, the role of HO‐1 in apoptosis is still unclear. In the presence of stimulation by cobalt protoporphyrin (CoPP), an HO‐1 inducer, apoptotic characteristics were observed, including DNA laddering, hypodiploid cells, and cleavages of caspase (Casp)‐3 and poly(ADP) ribose polymerase (PARP) proteins in human colon carcinoma COLO205, HCT‐15, LOVO and HT‐29 cells in serum‐free (SF) conditions with increased HO‐1, but not heat shock protein 70 (HSP70) or HSP90. The addition of 10% foetal bovine serum (FBS) or 1% bovine serum albumin accordingly inhibited CoPP‐induced apoptosis and HO‐1 protein expression in human colon cancer cells. CoPP‐induced apoptosis of colon cancer cells was prevented by the addition of the pan‐caspase inhibitor, Z‐VAD‐FMK (VAD), and the Casp‐3 inhibitor, Z‐DEVD‐FMK (DEVD). N‐Acetyl cysteine inhibited reactive oxygen species‐generated H2O2‐induced cell death with reduced intracellular peroxide production, but did not affect CoPP‐induced apoptosis in human colorectal carcinoma (CRC) cells. Two CoPP analogs, ferric protoporphyrin and tin protoporphyrin, did not affect the viability of human CRC cells or HO‐1 expression by those cells, and knockdown of HO‐1 protein expression by HO‐1 small interfering (si)RNA reversed the cytotoxic effect elicited by CoPP. Furthermore, the carbon monoxide (CO) donor, CORM, but not FeSO4 or biliverdin, induced DNA ladders, and cleavage of Casp‐3 and PARP proteins in human CRC cells. Increased phosphorylated levels of the endoplasmic reticular (ER) stress proteins, protein kinase R‐like ER kinase (PERK), and eukaryotic initiation factor 2α (eIF2α) by CORM and CoPP were identified, and the addition of the PERK inhibitor, GSK2606414, inhibited CORM‐ and CoPP‐induced apoptosis. Increased GRP78 level and formation of the HO‐1/GRP78 complex were detected in CORM‐ and CoPP‐treated human CRC cells. A pro‐apoptotic role of HO‐1 against the viability of human CRC cells via induction of CO and ER stress was firstly demonstrated herein.  相似文献   

4.
Melanoma is characterized by dysregulated intracellular signalling pathways including an impairment of the cell death machinery, ultimately resulting in melanoma resistance, survival and progression. This explains the tumour's extraordinary resistance to the standard treatment. Imiquimod is a topical immune response modifier (imidazoquinoline) with both antiviral and antitumour activities. The mechanism by which imiquimod triggers the apoptosis of melanoma cells has now been carefully elucidated. Imiquimod‐induced apoptosis is associated with the activation of apoptosis signalling regulating kinase1/c‐Jun‐N‐terminal kinase/p38 pathways and the induction of endoplasmic stress characterized by the activation of the protein kinase RNA‐like endoplasmic reticulum kinase signalling pathway, increase in intracellular Ca2+ release, degradation of calpain and subsequent cleavage of caspase‐4. Moreover, imiquimod triggers the activation of NF‐κB and the expression of the inhibitor of apoptosis proteins (IAPs) such as, X‐linked IAP (XIAP) together with the accumulation of reactive oxygen species (ROS). Also, imiquimod triggers mitochondrial dysregulation characterized by the loss of mitochondrial membrane potential (Δψm), the increase in cytochrome c release, and cleavage of caspase‐9, caspase‐3 and poly(ADP‐ribose) polymerase (PARP). Inhibitors of specific pathways, permit the elucidation of possible mechanisms of imiquimod‐induced apoptosis. They demonstrate that inhibition of NF‐kB by the inhibitor of nuclear factor kappa‐B kinase (IKK) inhibitor Bay 11‐782 or knockdown of XIAP induces melanoma apoptosis in cells exposed to imiquimod. These findings support the use of either IKK inhibitors or IAP antagonists as adjuvant therapies to improve the effectiveness topical imiquimod in the treatment of melanoma.  相似文献   

5.
Lactoferrin (Lf), a cationic iron‐binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron‐free bovine lactoferrin (apo‐bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron‐free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric‐bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl‐2, Sirt1, Mcl‐1, and PARP‐1 were modulated by 1.25 μM of apo‐bLf. In the same cell line, apo‐bLf induced apoptosis together with poly (ADP‐ribose) polymerase cleavage, caspase activation, and a significant drop of NAD+. In addition, apo‐bLf–treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo‐bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.  相似文献   

6.
Objective : Determine the biochemical pathways involved in induction of apoptosis by ajoene, an organosulfur compound from garlic. Research Methods and Procedures : Mature 3T3‐L1 adipocytes were incubated with ajoene at concentrations up to 200 μM. Viability and apoptosis were quantified using an MTS‐based cell viability assay and an enzyme‐linked immunosorbent assay for single‐stranded DNA (ssDNA), respectively. Intracellular reactive oxygen species (ROS) production was measured based on production of the fluorescent dye, dichlorofluorescein. Activation of the mitogen‐activated protein kinases extracellular signal‐regulating kinase 1/2 (ERK) and c‐Jun‐N‐terminal kinase (JNK) was shown by Western blot. Western blot was also used to show activation of caspase‐3, translocation of apoptosis‐inducing factor (AIF) from mitochondria to nucleus, and cleavage of 116‐kDa poly(ADP‐ribose) polymerase (PARP)‐1. Results : Ajoene induced apoptosis of 3T3‐L1 adipocytes in a dose‐ and time‐dependent manner. Ajoene treatment resulted in activation of JNK and ERK, translocation of AIF from mitochondria to nucleus, and cleavage of 116‐kDa PARP‐1 in a caspase‐independent manner. Ajoene treatment also induced an increase in intracellular ROS level. Furthermore, the antioxidant N‐acetyl‐l ‐cysteine effectively blocked ajoene‐mediated ROS generation, activation of JNK and ERK, translocation of AIF, and degradation of PARP‐1. Discussion : These results indicate that ajoene‐induced apoptosis in 3T3‐L1 adipocytes is initiated by the generation of hydrogen peroxide, which leads to activation of mitogen‐activated protein kinases, degradation of PARP‐1, translocation of AIF, and fragmentation of DNA. Ajoene can, thus, influence the regulation of fat cell number through the induction of apoptosis and may be a new therapeutic agent for the treatment of obesity.  相似文献   

7.
Presenilin-associated protein (PSAP) has been identified as a mitochondrial proapoptotic protein. However, the mechanism by which PSAP induces apoptosis remains unknown. To this end, we have established an inducible expression system. Using this system, we have examined the roles of B-cell lymphoma 2 (Bcl-2) family proteins, cytochrome c, Smac (Smac/Diablo, second mitochondria-derived activator of caspases/direct IAP binding protein with low PI), and Apaf-1 (apoptotic protease-activating factor) in PSAP-induced apoptosis. Our results demonstrate that knockdown of Apaf-1 abolished PSAP-induced caspase activation and poly(ADP ribose) polymerase (PARP) cleavage, indicating that the apoptosome formation triggered by cytochrome c is crucial for PSAP-induced apoptosis. Our data also demonstrate that knockdown of Smac abolished PSAP-induced caspase activation and PARP cleavage, indicating that, in addition to Apaf-1 or apoptosome formation, Smac is also essential for PSAP-induced apoptosis. However, interestingly, our data demonstrate that overexpression of Bcl-2 and Bcl-xL did not protect cells from PSAP-induced apoptosis, and that knockdown of Bid, Bax, and Bak had no effect on PSAP-induced cytochrome c and Smac release, indicating that PSAP-induced apoptosis is not regulated by Bcl-2 family proteins. These results strongly suggest that PSAP evokes mitochondrial apoptotic cascades via a novel mechanism that is not regulated by Bcl-2 family proteins, but that both the formation of cytochrome c-Apaf-1 apoptosome and the presence of Smac are absolutely required for PSAP-induced apoptosis.  相似文献   

8.
Rhein is an anthraquinone compound enriched in the rhizome of rhubarb, a traditional Chinese medicine herb showing anti-tumor promotion function. In this study, we first reported that rhein could induce apoptosis in human promyelocytic leukemia cells (HL-60), characterized by caspase activation, poly(ADP)ribose polymerase (PARP) cleavage, and DNA fragmentation. The efficacious induction of apoptosis was observed at 100 microM for 6h. Mechanistic analysis demonstrated that rhein induced the loss of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release from mitochondrion to cytosol, and cleavage of Bid protein. Rhein also induced generation of reactive oxygen species (ROS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. However, these actions seem not to be associated with the apoptosis induction because antioxidants including N-acetyl cysteine (NAC), Tiron, and catalase did not block rhein-induced apoptosis, although they could block the generation of ROS and the phosphorylation of JNK and p38 kinase. Our data demonstrate that rhein induces apoptosis in HL-60 cells via a ROS-independent mitochondrial death pathway.  相似文献   

9.
The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy.  相似文献   

10.
Withaferin A (Wit A), a natural compound derived from the medicinal plant Withania somnifera, has been reported for the anti-tumor effects, including the inhibition of tumor cell growth, metastasis and angiogenesis. In this study, we investigated the effect of Wit A on radiation-induced apoptosis in human renal cancer cells (Caki cells). Our results showed that, compared with Wit A or radiation alone, the combination of both resulted in a significant enhancement of apoptosis, showing the increase in the cleavage of caspase-3 and PARP as well as sub-G1 cell population. In addition, reactive oxygen species (ROS) generation was correlated with the enhancement of radiation-induced apoptosis by Wit A. Wit A downregulated Bcl-2 protein levels and ectopic expression of Bcl-2 in Caki cells attenuated the apoptosis induced by Wit A plus radiation. Taken together, these results indicate that Wit A enhanced radiation-induced apoptosis in Caki cells through ROS generation, down-regulation of Bcl-2 and Akt dephosphorylation. Thus, our study shows that Wit A may be used as an effective radiosensitizer in cancer therapy.  相似文献   

11.
The anti-cancer activities of curcumin (CUR), a polyphenol derived from the plant Curcuma longa, has been extensively studied. In the present study, we found that CUR displayed anti-multidrug-resistant (MDR) activity in K562/A02 cells. A short-time treatment with CUR sufficiently and equally induced DNA damage, decreased cell viability, and triggered apoptosis in parent K562 and MDR K562/A02 cells. The short-time treatment with CUR also caused decrease of pro-caspase 3 in both cell lines and decrease of pro-caspase 9, increase of PARP cleavage and the ratio of Bax/Bcl-xL in MDR K562/A02 cells. Further experiment revealed that CUR was capable of down-regulating P-glycoprotein in MDR K562/A02 cells. Moreover, we observed that Cu(2+) enhanced CUR-mediated apoptosis which was blocked by antioxidants N-acetyl-cysteine and catalase. In summary, the short-time treatment with CUR sufficiently induced DNA damage, decreased cell viability and triggered apoptosis in MDR K562/A02 cells and Cu(2+) enhanced CUR-mediated apoptosis which due to reactive oxygen species generation.  相似文献   

12.
Resistance to chemotherapeutic drugs is a critical problem in cancer therapy, but the underlying mechanism has not been fully elucidated. TP53‐induced glycolysis regulatory phosphatase (TIGAR), an important glycolysis and apoptosis regulator, plays a crucial role in cancer cell survival by protecting cells against oxidative stress‐induced apoptosis. In the present study, we investigated whether TIGAR is involved in epithelial‐mesenchymal transition (EMT) in doxorubicin (DOX)‐resistant human non‐small cell lung cancer (NSCLC), A549/DOX cells. We found that the expression of TIGAR was significantly higher in A549/DOX cells than in the parent A549 cell lines. siRNA‐mediated TIGAR knockdown reduced migration, viability and colony survival of doxorubicin‐resistant lung cancer cells. Also, TIGAR knockdown decreased pro‐survival protein Bcl‐2 and increased pro‐apoptotic Bax and cleaved poly (ADP‐ribose) polymerase (PARP). Moreover, TIGAR depletion significantly up‐regulated both caspase‐3 and caspase‐9 expression. Furthermore, TIGAR depletion up‐regulated the expression of E‐cadherin and down‐regulated the expression of vimentin. These results indicate that TIGAR knockdown may inhibit EMT in doxorubicin (DOX)‐resistant human NSCLC and may represent a therapeutic target for a non‐small lung cancer cells chemoresistance.  相似文献   

13.
Prohibitin 1 (PHB1) is a highly conserved protein that is mainly localized to the inner mitochondrial membrane and has been implicated in regulating mitochondrial function in yeast. Because mitochondria are emerging as an important regulator of vascular homeostasis, we examined PHB1 function in endothelial cells. PHB1 is highly expressed in the vascular system and knockdown of PHB1 in endothelial cells increases mitochondrial production of reactive oxygen species via inhibition of complex I, which results in cellular senescence. As a direct consequence, both Akt and Rac1 are hyperactivated, leading to cytoskeletal rearrangements and decreased endothelial cell motility, e.g., migration and tube formation. This is also reflected in an in vivo angiogenesis assay, where silencing of PHB1 blocks the formation of functional blood vessels. Collectively, our results provide evidence that PHB1 is important for mitochondrial function and prevents reactive oxygen species–induced senescence and thereby maintains the angiogenic capacity of endothelial cells.  相似文献   

14.
Accelerated glucose metabolism leads to oxidative stress and DNA damage in cells; these effects are related to glucose toxicity. The precise mechanisms of glucose toxicity are still unclear. The aim of this work was to investigate the mechanism of poly(ADP‐ribose) polymerase 1 (PARP1), which is a DNA repair enzyme activated by high‐glucose‐induced oxidative stress, and its effect on glucose toxicity in HepG2 hepatocytes. HepG2 cells were cultured under normal (5.5 mM) or high (30 mM) glucose conditions for 4 days. PJ34, which is an inhibitor of PARP1, was used to determine the downstream effects of PARP1 activation. PARP1 activity in 30 mM‐glucose‐treated cells was more than that in 5.5 mM‐glucose‐treated cells, and the activity correlated with the increase in ROS generation and DNA damage. PJ34 suppressed PARP1 activation and prevented the high‐glucose‐induced suppression of SIRT1 and AMP‐activated protein kinase (AMPK) activity, which was similar to its effect on the restoration of intracellular nicotinamide adenine dinucleotide (NAD) content. Further, the phosphorylation of insulin receptor was attenuated in response to insulin stimulation under high glucose conditions, and PJ34 could reverse this effect. The results of transfection of HepG2 cells with PARP1 small interfering RNA were similar to those obtained by treatment of the cells with PARP1 inhibitor PJ34. These data suggest that high‐glucose‐induced PARP1 activation might play a role in glucose toxicity by down‐regulating SIRT1 and AMPK activity through NAD depletion and resulting in insulin insensitivity. J. Cell. Biochem. 112: 299–306, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Abstract In the present study we investigated the beneficial role of glycine in iron (FeSO(4)) induced oxidative damage in murine hepatocytes. Exposure of hepatocytes to 20 μM FeSO(4) for 3 hours enhanced reactive oxygen species (ROS) generation and induced alteration in biochemical parameters related to hepatic oxidative stress. Investigating cell signalling pathway, we observed that iron (FeSO(4)) intoxication caused NF-κB activation as well as the phosphorylation of p38 and ERK MAPKs. Iron (FeSO(4)) administration also disrupted Bcl-2/Bad protein balance, reduced mitochondrial membrane potential, released cytochrome c and induced the activation of caspases and cleavage of PARP protein. Flow cytometric analysis also confirmed that iron (FeSO(4)) induced hepatocytes death is apoptotic in nature. Glycine (10 mM) supplementation, on the other hand, reduced all the iron (FeSO(4)) induced apoptotic indices. Combining, results suggest that glycine could be a beneficial agent against iron mediated toxicity in hepatocytes.  相似文献   

16.
BCL2, originally identified as a proto‐oncogene in B‐cell lymphoma, is a key regulator of apoptosis. Although it is more than 200 kb in length, at least 70% of the t(14;18) translocation in follicular lymphomas occurs at the BCL2 major breakpoint region (mbr), located in the 3′‐untranslated region (3'‐UTR). We have previously found that the mbr is a regulatory element which positively regulates BCL2 expression and this regulatory function was closely associated with SATB1, which binds to a 37 bp mbr (37 mbr) in the 3′‐end of the mbr directly. However, the precise molecular mechanisms by which the mbr regulates gene expression are not fully understood. In this study, we purified Poly(ADP‐ribose) polymerase‐1 (PARP‐1) from the DNA–protein complexes formed by 37 mbr in Jurkat cells and demonstrated that PARP‐1 participates in the 37 mbr–protein complex's formation in vitro and in vivo. Functional analysis showed that overexpression of PARP‐1 decreases 37 mbr regulatory function and BCL2 expression. Conversely, knockdown of PARP‐1 with RNAi increases BCL2 expression. Taken together, the present findings indicate that PARP‐1 is a component of BCL2 37 mbr–protein complexes, and PARP‐1 is involved in the regulation of BCL2 expression. These findings are helpful in understanding the regulatory mechanisms of BCL2 expression. J. Cell. Biochem. 110: 1208–1218, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

17.
Gossypol is a component present in cottonseeds and has been demonstrated to be an effective contraceptive drug in preventing spermatogenesis in mammalian species. In the present, we reported that gossypol could induce apoptosis in human promyelocytic leukemia cells (HL-60), as characterized by DNA fragmentation, poly(ADP) ribose polymerase (PARP) cleavage. The efficacious induction of apoptosis was observed at 50 microM for 6 h. Further molecular analysis showed that gossypol induced the truncation of Bid protein, the loss of mitochondrial membrane potential (DeltaPsi m), cytochrome c release from mitochondria into cytosol, and activation of caspase-3, -8, and -9. However, gossypol did not increase the level of reactive oxygen species (ROS), and antioxidants including N-acetyl cysteine (NAC) and catalase could not block gossypol-induced apoptosis in the HL-60 cells. These data suggest that gossypol induces apoptosis in HL-60 cells through ROS-independent mitochondrial dysfunction pathway.  相似文献   

18.
19.
20.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号