首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
AMPH1, an abundant protein in nerve terminals, plays a critical role in the recruitment of dynamin to sites of clathrin‐mediated endocytosis. Recently, it is reported to be involved in breast cancer and lung cancer. However, the impact of AMPH1 on ovarian cancer is unclear. In this study, we used gain‐of‐function and loss‐of‐function methods to explore the role of AMPH1 in ovarian cancer cells. AMPH1 inhibited ovarian cancer cell growth and cell migration, and promoted caspase‐3 activity, resulting in the increase of cell apoptosis. In xenograft mice model, AMPH1 prevented tumour progression. The anti‐oncogene effects of AMPH1 on ovarian cancer might be partially due to the inhibition of PI3K/AKT signalling pathway after overexpression of AMPH1. Immunohistochemistry analysis showed that the staining of AMPH1 was remarkably reduced in ovarian cancer tissues compared with normal ovarian tissues. In conclusion, our study identifies AMPH1 as a tumour suppressor in ovarian cancer in vitro and in vivo. This is the first evidence that AMPH1 inhibited cell growth and migration, and induced apoptosis via the inactivation of PI3K/AKT signalling pathway on ovarian cancer, which may be used as an effective strategy.  相似文献   

2.
3.
Prostate cancer (PCa) is the second leading cause of cancer‐related death in males, primarily due to its metastatic potential. The present study aims to identify the expression of microRNA‐539 (miR‐539) in PCa and further investigate its functional relevance in PCa progression both in vitro and in vivo. Initially, microarray analysis was conducted to obtain the differentially expressed gene candidates and the regulatory miRNAs, after which the possible interaction between the two was determined. Next, ectopic expression and knock‐down of the levels of miR‐539 were performed in PCa cells to identify the functional role of miR‐539 in PCa pathogenesis, followed by the measurement of E‐cadherin, vimentin, Smad4, c‐Myc, Snail1 and SLUG expression, as well as proliferation, migration and invasion of PCa cells. Finally, tumour growth was evaluated in nude mice through in vivo experiments. The results found that miR‐539 was down‐regulated and DLX1 was up‐regulated in PCa tissues and cells. miR‐539 was also found to target and negatively regulate DLX1 expression, which resulted in the inhibition of the TGF‐β/Smad4 signalling pathway. Moreover, the up‐regulation of miR‐539 or DLX1 gene silencing led to the inhibition of PCa cell proliferation, migration, invasion, EMT and tumour growth, accompanied by increased E‐cadherin expression and decreased expression of vimentin, Smad4, c‐Myc, Snail1 and SLUG. In conclusion, the overexpression of miR‐539‐mediated DLX1 inhibition could potentially impede EMT, proliferation, migration and invasion of PCa cells through the blockade of the TGF‐β/Smad4 signalling pathway, highlighting a potential miR‐539/DLX1/TGF‐β/Smad4 regulatory axis in the treatment of PCa.  相似文献   

4.
Overexpression of human epidermal growth factor receptor 2 (HER2) is observed in breast cancer. The major snag faced by the human population is the development of chemoresistance to HER2 inhibitors by advanced stage breast cancer cells. Moreover, recent researchers focussed on fisetin as an antiproliferative and chemotherapeutic agent. Therefore, this study was intended to analyze the effects of fisetin on HER2/neu‐overexpressing breast cancer cell lines. Our results depicted that fisetin induced apoptosis of these cells by various mechanisms, such as inactivation of the receptor, induction of proteasomal degradation, decreasing its half‐life, decreasing enolase phosphorylation, and alteration of phosphatidylinositol 3‐kinase/Akt signaling.  相似文献   

5.
6.
High Mobility Group AT‐hook 1 (HMGA1) was identified as a target of miR‐214 in human cervical and colorectal cancers (CaCx and CRC) in a previous study. While the expression of miR‐214 remains suppressed, HMGA1 behaves as a potent oncogene and plays crucial roles in several aberrant signalling pathways by interacting with intermediates like RELA, CTNNB1, STAT3, and TP53 in CaCx and CRC. Hypothetically, miR‐214 should be able to regulate the stabilization of some of these intermediates through the regulation of HMGA1. This was assessed by ectopically expressing miR‐214 or complementarily, by inhibiting the expression of HMGA1. In promoter luciferase assays, miR‐214 inhibited NF‐κB and Wnt activities but elevated TP53 activity in cancer cells. Further, miR‐214 suppressed the expression of HMGA1, RELA, CTNNB1, and STAT3 while elevating TP53 levels, similar to when small interfering RNA (siRNA) against HMGA1 was used, as revealed by Western blotting. It is suggested that poor expression of miR‐214, commonly reported in CaCx and CRC tissues, may not only result in the sustained expression of HMGA1 but also that of RELA, CTNNB1, and STAT3, and a congruent suppression of TP53 during cancer initiation/progression. These several states are, however, reversed when miR‐214 is reintroduced and could explain the tumour suppressive functions observed in earlier studies. Further studies are, however, required to reveal how microRNA‐mediated regulation of HMGA1 expression may affect individual signalling pathways in CaCx and CRC. Current results reveal that miR‐214 is not only able to regulate the expression of its direct target, HMGA1, but also that of a few signalling intermediates like TP53, RELA, CTNNB1, and STAT3, with which HMGA1 interacts. These intermediates play crucial roles in signalling pathways commonly deregulated in human CaCx and CRC. Hence, it is proposed that miR‐214 might act as a tumour suppressor by regulating several aberrant signalling pathways through HMGA1. This knowledge has the potential to help design novel therapeutic strategies in CaCx and CRC.  相似文献   

7.
Between 1% and 15% of people are globally affected by kidney stones, and this disease has become more common since the 1970s. Therefore, this study aims to investigate the effects of gastrin-releasing peptide receptor (GRPR) gene silencing via the PI3K/Akt signaling pathway on the development of the epithelial–mesenchymal transition (EMT) and formation of a calcium oxalate crystal in renal tubular epithelial cells (TECs) of kidney stones. A total of 70 clean and healthy C57BL/6J mice were assigned into the normal ( n = 10) and kidney stones groups ( n = 60). The underlying regulatory mechanisms of GRPR were analyzed in concert with the treatment of shGRPR-1, LY294002, and shGRPR-1 + LY294002 in TECs isolated from mice with kidney stones. A series of experiments were conducted for the measurement of urinary oxalate and urinary calcium, the renal calcium salt deposition, the positive rate of GRPR, the expressions of renal TECs related genes and calcium oxalate regulation related genes, and the growth of calcium crystals induced by cells. After treatment of shGRPR-1 and shGRPR-1 + LY294002, levels of urinary oxalate and urinary calcium in the serum, as well as positive rate of GRPR, became relatively low, levels of E-cadherin enhanced, whereas levels of Akt, PI3K, GRPR, extents of PI3K and Akt phosphorylation, α-SMA, Vimentin and FSP-1, OPN, MCP-1, and CD44 decreased and a number of crystals reduced. Taken together, we conclude that GRPR gene silencing suppresses the development of the EMT and formation of the calcium oxalate crystal in renal TECs of kidney stones through the inactivation of the PI3K/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号