首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
Aim Physiology is emerging as a basis for understanding the distribution and diversity of organisms, and ultimately for predicting their responses to climate change. Here we review how the difference in physiology of terrestrial vertebrate ectotherms (amphibians and reptiles) and endotherms (birds and mammals) is expected to influence broad‐scale ecological patterns. Location Global terrestrial ecosystems. Methods We use data from the literature and modelling to analyse geographic gradients in energy use and thermal limits. We then compare broad‐scale ecological patterns for both groups with expectations stemming from these geographic gradients. Results The differences in thermal physiology between ectotherms and endotherms result in geographically disparate macrophysiological constraints. Field metabolic rate (FMR) is stable or decreases slightly with temperature for endotherms, while it generally increases for ectotherms, leading to opposing latitudinal gradients of expected FMR. Potential activity time is a greater constraint on the distributions of ectotherms than endotherms, particularly at high latitudes. Differences in the primary correlates of abundance and species richness for two representative taxonomic groups are consistent with the consequences of these basic physiological differences. Ectotherm richness is better predicted by temperature, whereas endotherm richness is more strongly associated with primary productivity. Finally, in contrast to endotherms, ectotherm richness is not strongly related to abundance. Main conclusions Differences in thermal physiology affect how organisms interact with and are constrained by their environment, and may ultimately explain differences in the geographic pattern of biodiversity for endotherms and ectotherms. Linking the fields of physiological and broad‐scale ecology should yield a more mechanistic understanding of how biodiversity will respond to environmental change.  相似文献   

2.
Intraspecific variability in foraging behavior has been documented across a range of taxonomic groups, yet the energetic consequences of this variation are not well understood for many species. Understanding the effect of behavioral variation on energy expenditure and acquisition is particularly crucial for mammalian carnivores because they have high energy requirements that place considerable pressure on prey populations. To determine the influence of behavior on energy expenditure and balance, we combined simultaneous measurements of at‐sea field metabolic rate (FMR) and foraging behavior in a marine carnivore that exhibits intraspecific behavioral variation, the California sea lion (Zalophus californianus). Sea lions exhibited variability in at‐sea FMR, with some individuals expending energy at a maximum of twice the rate of others. This variation was in part attributable to differences in diving behavior that may have been reflective of diet; however, this was only true for sea lions using a foraging strategy consisting of epipelagic (<200 m within the water column) and benthic dives. In contrast, sea lions that used a deep‐diving foraging strategy all had similar values of at‐sea FMR that were unrelated to diving behavior. Energy intake did not differ between foraging strategies and was unrelated to energy expenditure. Our findings suggest that energy expenditure in California sea lions may be influenced by interactions between diet and oxygen conservation strategies. There were no apparent energetic trade‐offs between foraging strategies, although there was preliminary evidence that foraging strategies may differ in their variability in energy balance. The energetic consequences of behavioral variation may influence the reproductive success of female sea lions and result in differential impacts of individuals on prey populations. These findings highlight the importance of quantifying the relationships between energy expenditure and foraging behavior in other carnivores for studies addressing fundamental and applied physiological and ecological questions.  相似文献   

3.
Reproduction is energetically financed using strategies that fall along a continuum from animals that rely on stored energy acquired prior to reproduction (i.e., capital breeders) to those that rely on energy acquired during reproduction (i.e., income breeders). Energy storage incurs a metabolic cost. However, previous studies suggest that this cost may be minimal for small‐bodied ectotherms. Here I test this assumption. I use a laboratory feeding experiment with the European green crab Carcinus maenas to establish individuals with different amounts of energy storage. I then demonstrate that differences in energy storage account for 26% of the variation in basal metabolic costs. The magnitudes of these costs for any individual crab vary through time depending on the amount of energy it has stored, as well as on temperature‐dependent metabolism. I use previously established relationships between temperature‐ and mass‐dependent metabolic rates, combined with a feasible annual pattern of energy storage in the Gulf of Maine and annual sea surface temperature patterns in this region, to estimate potential annual metabolic costs expected for mature female green crabs. Results indicate that energy storage should incur an ~8% increase in metabolic costs for female crabs, relative to a hypothetical crab that did not store any energy. Translated into feeding, for a medium‐sized mature female (45 mm carapace width), this requires the consumption of an additional ~156 mussels annually to support the metabolic cost of energy storage. These results indicate, contrary to previous assumptions, that the cost of energy storage for small‐bodied ectotherms may represent a considerable portion of their basic operating energy budget. An inability to meet these additional costs of energy storage may help explain the recent decline of green crabs in the Gulf of Maine where reduced prey availability and increased consumer competition have combined to hamper green crab foraging success in recent years.  相似文献   

4.
Objective: Determine whether sleeping and resting energy expenditure and sleeping, resting, and 24‐hour fuel use distinguish obesity‐prone from obesity‐resistant women and whether these metabolic factors explain long‐term weight gain. Research Methods and Procedures: Forty‐nine previously overweight but currently normal‐weight women were compared with 49 never‐overweight controls. To date, 87% of the 98 women have been re‐evaluated after 1 year of follow‐up, without intervention, and 38% after 2 years. Subjects were studied at a General Clinical Research Center after 4 weeks of tightly controlled conditions of energy balance and macronutrient intake. Forty‐nine obesity‐prone weight‐reduced women were group‐matched with 49 never‐overweight obesity‐resistant controls. All were premenopausal, sedentary, and normoglycemic. Energy expenditure and fuel use were assessed using chamber calorimetry. Body composition was assessed using DXA. Results: At baseline, percent body fat was not different between the obesity‐prone and control women (33 ± 4% vs. 32 ± 5%, respectively; p = 0.22). Analysis of covariance results show that after adjusting for lean and fat mass, sleeping and resting energy expenditure of obesity‐prone women was within 2% of controls. Neither sleeping nor resting energy expenditure nor sleeping, resting, or 24‐hour fuel use was significantly different between the groups (p > 0.25). None of the metabolic variables contributed significantly to patterns of weight gain at 1 or 2 years of follow‐up. Discussion: The results suggest that when resting and sleeping energy expenditure and fuel use are assessed under tightly controlled conditions, these metabolic factors do not distinguish obesity‐prone from obesity‐resistant women or explain long‐term weight changes.  相似文献   

5.
Blossom-bats, Syconycteris australis (18 g) are known to be highly active throughout the night. Since this species frequently enters torpor, we postulated that their use of heterothermy may be related to a high energy expenditure in the field. To test this hypothesis we measured field metabolic rates (FMR) of S. australis at a subtropical site using the doubly labelled water (DLW) method. We also measured DLW turnover in captive animals held at constant ambient temperature (T a) with ad libitum food to estimate whether T a and food availability affect energy expenditure under natural conditions. The FMR of S. australis was 8.55 ml CO2 g−1 h−1 or 76.87 kJ day−1 which is 7.04 times the basal metabolic rate (BMR) and one of the highest values reported for endotherms to date. Mass-specific energy expenditure by bats in the laboratory was about two-thirds of that of bats in the field, but some of this difference was explained by the greater body mass in captive bats. This suggests that foraging times in the field and laboratory were similar, and daily energy expenditure was not strongly affected by T a or ad libitum food. Water uptake in the field was significantly higher than in the laboratory, most likely because nectar contained more water than the laboratory diet. Our study shows that S. australis has a FMR that is about double that predicted for its size although its BMR is lower than predicted. This supports the view that caution must be used in making assumptions from measurements of BMR in the laboratory about energy and other biological requirements in free-ranging animals. Accepted: 4 January 1999  相似文献   

6.
1. In many species, individuals will alter their foraging strategy in response to changes in prey density. However, previous work has shown that prey density has differing effects on the foraging mode decisions of ectotherms as compared with endotherms. This is likely due to differences in metabolic demand; however, the relationship between metabolism and foraging mode choice in ectotherms has not been thoroughly studied. 2. Juvenile lumpfish Cyclopterus lumpus forage using one of two modes: they can actively search for prey while swimming, or they can 'sit-and-wait' for prey while clinging to the substrate using a ventral adhesive disk. The presence of these easily distinguishable foraging modes makes juvenile lumpfish ideal for the study of foraging mode choice in ectotherms. 3. Behavioural observations conducted during laboratory experiments showed that juvenile lumpfish predominantly use the 'cling' foraging mode when prey is abundant, but resort to the more costly 'swim' mode to seek out food when prey is scarce. The metabolic cost of active foraging was also quantified for juvenile lumpfish using swim-tunnel respirometry, and a model was devised to predict the prey density at which lumpfish should switch between the swim and cling foraging modes to maximize energy intake. 4. The results of this model do not agree with previous observations of lumpfish behaviour, and thus it appears that juvenile lumpfish do not try to maximize their net energetic gain. Instead, our data suggest that juvenile lumpfish forage in a manner that reduces activity and conserves space in their limited aerobic scope. This behavioural flexibility is of great benefit to this species, as it allows young individuals to divert energy towards growth as opposed to activity. In a broader context, our results support previous speculation that ectotherms often forage in a manner that maintains a minimum prey encounter rate, but does not necessarily maximize net energy gain.  相似文献   

7.
Objective: SMA1 mice carry a missense mutation in the growth hormone gene that leads to semidominant dwarfism and obesity. In this study, the basic thermal and metabolic properties of SMA1 mice were examined to detect metabolic alterations that can support the accretion of excess fat. Research Methods and Procedures: Basal and resting metabolic rates (RMRs) in wild‐type and SMA1 (sma1/+ and sma1/sma1) mice were determined by indirect calorimetry. Body temperature (Tb) was recorded using intraperitoneally implanted temperature‐sensitive transmitters, and body composition was determined by DXA. Results: SMA1 mice have proportionally lower basal and resting metabolic rates, higher body mass (BM)‐specific RMRs, and a higher lower critical temperature, and display a decrease in Tb by 0.4 °C in sma1/+ and 0.9 °C in sma1/sma1. Discussion: The analysis of gene effects on BM and energy expenditure in mouse mutants must consider the appropriate allometric relationship between BM and metabolic rate. With the exception of Tb, all metabolic alterations observed in SMA1 reflect reduced size.  相似文献   

8.
SUSAN B. ROBERTS, MARGERY NICHOLSON, MYRLENE STATEN, GERALD E. DALLAL, ANA L. SAWAYA, MELVIN B. HEYMAN, PAUL FUSS, ANDREW S. GREENBERG. Relationship between circulating leptin and energy expenditure in adult men and women aged 18 years to 81 years. Recent studies suggest that leptin may be an important metabolic signal for energy regulation in rodents, but the role of leptin in human energy regulation remains uncertain. Because adaptive variations in energy expenditure play an important role in human energy regulation, we investigated the relationship between leptin and energy expenditure parameters in 61 weight-stable men and women aged 18 years to 81 years who were not obese. Measurements were made of circulating leptin in the fasting state, body fat and fat free mass, resting metabolic rate (n=61), free-living total energy expenditure (n=52), and the thermic effect of feeding (n=33). After statistically accounting for age, body fat, and fat free mass, there was no association between leptin and any measured energy expenditure parameter. In addition, there was no effect of age on the relationship between circulating leptin and body fat mass. These results indicate that physiological variations in circulating leptin are not linked with adaptive variations in energy expenditure in humans, in contrast to indications of this phenomenon in the ob/ob mouse.  相似文献   

9.
By using time-depth recorders to measure diving activity and the doubly-labelled water method to determine energy expenditure, the relationship between foraging behaviour and energy expenditure was investigated in nine Antarctic fur seal females rearing pups. At-sea metabolic rate (MR) (mean of 6.34 ± 0.4 W. kg-1; 4.6 times predicted BMR) was positively correlated to foraging trip duration (mean of 4.21 ± 0.54 days; r2= 0.5, P < 0.04). There were no relationships between MR and the total number of dives, the total time spent diving or the total vertical distance travelled during the foraging trip. There was, however, a close negative sigmoidal relationship (r2= 0.93) between at-sea MR and the proportion of time at sea spent diving. This measure of diving behaviour may provide a useful, inexpensive means of estimating foraging energy expenditure in this species and possibly in other otariids. The rate of diving (m.h-1) was also negatively related to at-sea MR (r2= 0.69, P < 0.005). Body mass gain during a foraging trip had a positive relationship to the time spent at sea (r2= 0.58, P < 0.02) and the total amount of energy expended while at sea (r2= 0.72, P < 0.004) such that, while females undertaking long trips have higher metabolic rates, the energetic efficiency with which females gain mass is independent of the time spent at sea. Therefore, within the range of conditions observed, there is no apparent energetic advantage for females in undertaking foraging trips of any particular duration.  相似文献   

10.
Altricial mammals and birds become endothermic at about half the size of adults and presumably would benefit energetically from entering torpor at that time. Because little is known about torpor during development in endotherms, we investigated whether after the establishment of endothermic thermoregulation (i.e. the ability to maintain a high body temperature during cold exposure), Sminthopsis macroura, a small (∼25 g) insectivorous marsupial, is capable of entering torpor and whether torpor patterns change with growth. Endothermic thermoregulation was established when the nest young reached a body mass of ∼10 g, and they were capable of entering torpor early during development at ∼10–12 g, lending some support to the view that torpor is a phylogenetically old mammalian trait. Torpor bout length shortened significantly and the minimum metabolic rate during torpor increased as juveniles approached adult size, and consequently total daily energy expenditure increased steeply with age. Relationships between total daily energy expenditure and body mass during development of S. macroura (slope ∼1.3) differed substantially from the relationship between basal metabolism and body mass in adult endotherms (slope ∼0.75) suggesting that the energy expenditure–size relationship during the development differs substantially from that in adults under thermo-neutral conditions. Our study shows that while torpor can substantially reduce energy expenditure during development of endotherms and hence is likely important for survival during energy bottlenecks, it also may enhance somatic growth when food is limited. We therefore hypothesize that torpor during the development in endotherms is far more widespread than is currently appreciated.  相似文献   

11.
1. The metabolic or respiratory cost of growth ( R G) is the increase in metabolic rate of a growing animal, and it represents chemical potential energy expended in support of net biosynthesis but not deposited as new tissue.
2. Two statistical methods (multiple non-linear regression and analysis of regression residuals) were used to calculate R G from data ( n = 68) from a doubly labelled water study of free-ranging Garter Snakes ( Thamnophis sirtalis fitchi ) in northern California.
3. The sample-wise ('ecological') cost of growth was 2·07 kJ per gram of net growth (equivalent to 8·63 kJ g–1 dry tissue); reanalysis of a subset of efficient growers yielded a more conservative 'physiological' estimate of 1·67 kJ g–1.
4. Our empirical estimate of R G, among the first reported for squamate reptiles and free-living animals of any kind, compares closely with published, laboratory-derived values for ectotherms.
5. The metabolic costs of growth accounted for an average of 30% of total field metabolic rates for these snakes, which were growing at a mean rate of 3% of body mass per day. However, our method probably underestimated the total ecological cost of growth for large animals, because potential growth costs that covary with body size were not included.
6. Distinction between conceptual and empirical energy budgets clarifies relationships among body size, metabolic rates, and the physiological and ecological costs of growth.  相似文献   

12.
We measured the metabolic rates as a direct estimate of energy expenditure of individual Neolamprologus pulcher, a cooperatively breeding cichlid fish, when resting and when performing agonistic, submissive or digging behaviours in a respirometer. Standard and routine metabolic rates increased linearly with body mass (range 0.9–8.4 g) when plotted on a doubly logarithmic scale (linear regression equations: standard metabolic rate: log individual oxygen consumption rate = 0.65 + 0.86 log body mass; routine metabolic rate: log individual oxygen consumption rate = 0.75 + 0.86 log body mass). Routine metabolic rates were, on average, 30% higher than standard metabolic rates. Submissive and agonistic behaviours raised routine metabolic rates by factors of 3.3 and 3.9, respectively. Digging resulted in a 6.1-fold increase of routine metabolic rates. Differences in metabolic rates between active and resting rates were statistically significant. However, those between the three behaviours were not. Mean opercular beat frequencies correlated significantly with routine metabolic rates and with metabolic rates when performing specific behaviours, which offers methodological prospects for field measurements. In N. pulcher, the high energy expenditure for submissive behaviour may indicate that this is a reliable signal. The considerable energy expenditure involved in territory defence suggests that these costs should be considered in addition to risk in cost-benefit analyses. This is the first study in which the energy expenditures of specific social and territory maintenance behaviours of individual fish were measured directly by respirometry and within the usual social setting of the fish. Accepted: 20 February 1998  相似文献   

13.
Diet quality can influence many aspects of digestion, but the links between diet quality and resting metabolism are poorly understood. In nature, it might be beneficial to reduce energy expenditure when only poor quality diets are available. Alternatively, animals might increase the processing capacity of the gut to more thoroughly extract energy. If maintaining the processing capacity of the gut is energetically expensive, then increasing gut size or function might result in higher resting metabolism. In ectotherms, most digestive functions are temperature dependent, thus another strategy to maintain energy balance might be to alter selected body temperatures. We tested whether differing concentrations of dietary fiber affected the resting metabolic rate or body temperatures selected by chuckwallas (Sauromalus obesus) – lizards that naturally experience marked variation in dietary fiber. Resting metabolic rates measured at two temperatures and over three time intervals did not differ between groups of lizards force-fed low- (30% neutral-detergent fiber; NDF) and high-fiber (45% NDF) diets, nor did these diet differences influence body temperatures selected in a thermal gradient. We conclude that ecologically relevant differences in diet quality may have negligible effects on resting metabolic rates and body temperatures selected by chuckwallas. Accepted: 5 January 1998  相似文献   

14.
Thermoregulatory responses are known to differ seasonally in endotherms and this is often dependent on the environment and region they are resident. Holarctic animals are exposed to severe winters and substantial seasonal variation in ambient temperature. In contrast, those in the Afrotropics have less severe winters, but greater variation in temperature, rainfall and net primary production. These environmental factors place different selection pressures on physiological responses in endotherms. In this study, metabolic rate (VO2) and body temperature (Tb) were measured in captive bred Rock Kestrels (Falco rupicolus) from the Afrotropics after a period of summer and winter acclimatisation. Resting metabolic rate was significantly lower after the winter acclimatisation period than after the summer acclimatisation period, and there was a shift in the thermoneutral zone from 20–33 °C in summer to 15–30 °C in winter. However, no significant difference in basal metabolic rate between summer and winter was found. The results show that Rock Kestrels reduce energy expenditure at low ambient temperatures in winter as expected in an Afrotropical species.  相似文献   

15.
The metabolic distinction between endotherms and ectotherms is profound. Whereas the ecology of metabolic rates is well studied, how endotherms evolved from their ectothermic ancestors remains unclear. The aerobic capacity model postulates that a genetic constraint between resting and maximal metabolism was essential for the evolution of endothermy. Using the multivariate breeders’ equation, I illustrate how the (i) relative sizes of genetic variances and (ii) relative magnitudes of selection gradients for resting and maximal metabolism affect the genetic correlation needed for endothermy to have evolved via a correlated response to selection. If genetic variances in existing populations are representative of ancestral conditions, then the aerobic capacity model is viable even if the genetic correlation was modest. The analyses reveal how contemporary data on selection and genetic architecture can be used to test hypotheses about the evolution of endothermy, and they show the benefits of explicitly linking physiology and quantitative genetic theory.  相似文献   

16.
The broad-scale ecology of energy expenditure of endotherms   总被引:2,自引:0,他引:2  
Energy expenditure in animals scales allometrically with body mass, but residual variation is not well understood. We examine the existing data on field metabolic rates (FMR) in endotherms for the potential role of environmental conditions. Across latitude, mass‐corrected FMR of 248 bird and mammal populations fall between two constraint lines: a lower bound that increases towards the poles and is driven by environmental factors and an upper bound that is invariant with latitude and may represent physiological limitations. This triangular pattern can be explained statistically with a multipredictor model that combines environmental conditions and species biology (including phylogeny). Lower environmental temperature and longer day length increase FMR, while taxonomy and diet explain much of the remaining variation. Combined, these effects appear to form a diversity of ‘metabolic niches’ that overall decreases from the tropics to the poles. The potential of factors related to latitude acting as constraints on the ecology and evolution of metabolic strategies in endotherms is discussed.  相似文献   

17.
Oona Poranen  Suvi Ruuskanen 《Ibis》2021,163(1):247-252
The pace‐of‐life syndrome hypothesis (POLS) represents an attractive theoretical framework suggesting that physiological and behavioural traits have evolved together with environmental conditions and life‐history strategies. POLS predicts that metabolic differences covary with behavioural variation such that high metabolic rate is associated with risk‐prone behaviour and a faster pace‐of‐life, whereas a low metabolic rate is associated with risk‐averse behaviour and a slower pace‐of‐life. We tested the POLS hypothesis in captive European Pied Flycatchers during their first year by examining the relationship between explorative behaviour and basal metabolic rate. Our results are inconsistent with POLS. The positive association of explorative behaviour with basal metabolic rate was not recovered for either sex, possibly due to foraging conditions in the aviaries where control and trial groups were fed twice a day, the birds' young age, developmental plasticity, or a non‐existent syndrome.  相似文献   

18.
The heat dissipation limit (HDL) hypothesis suggests that the capacity of endotherms to dissipate body heat may impose constraints on their energy expenditure. Specifically, this hypothesis predicts that endotherms should avoid the detrimental consequences of hyperthermia by lowering their energy expenditure and reducing their activity in response to high ambient temperatures (Ta). We used an extensive data set on the daily energy expenditure (DEE, n = 27) and the daily activity time (AT, n = 48) of male weasels (Mustela nivalis) during the spring and summer breeding season to test these predictions. We found that Ta was related in a “hump-shaped” (i.e. convex) manner to AT, DEE, resting metabolic rate (RMR) and metabolic scope (the ratio of DEE to RMR). These results support the HDL hypothesis because in response to warm Tas male weasels reduced their AT, DEE, and RMR. Although the activity and energy expenditure of large endotherms are most likely to be constrained in response to warm Tas because they are less able to dissipate heat, our results suggest that small endotherms may also experience constraints consistent with the HDL hypothesis.  相似文献   

19.
Temperature imposes significant constraints on ectothermic animals, and these organisms have evolved numerous adaptations to respond to these constraints. While the impacts of temperature on the physiology of ectotherms have been extensively studied, there are currently no frameworks available that outline the multiple and often simultaneous pathways by which temperature can affect behaviour. Drawing from the literature on insects, we propose a unified framework that should apply to all ectothermic animals, generalizing temperature's behavioural effects into: (1) kinetic effects, resulting from temperature's bottom‐up constraining influence on metabolism and neurophysiology over a range of timescales (from short to long term), and (2) integrated effects, where the top‐down integration of thermal information intentionally initiates or modifies a behaviour (behavioural thermoregulation, thermal orientation, thermosensory behavioural adjustments). We discuss the difficulty in distinguishing adaptive behavioural changes from constraints when observing animals' behavioural responses to temperature. We then propose two complementary approaches to distinguish adaptations from constraints, and categorize behaviours according to our framework: (i) ‘kinetic null modelling’ of temperature's effects on behaviour; and (ii) behavioural ecology experiments using temperature‐insensitive mutants. Our framework should help to guide future research on the complex relationship between temperature and behaviour in ectothermic animals.  相似文献   

20.
Predicted changes in global temperature are expected to increase extinction risk for ectotherms, primarily through increased metabolic rates. Higher metabolic rates generate increased maintenance energy costs which are a major component of energy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) mechanisms to optimize metabolic rate with respect to their environment. We examined relationships between temperature and standard metabolic rate across four populations of a widespread amphibian species to determine if populations vary in metabolic response and if their metabolic rates are plastic to seasonal thermal cues. Populations from warmer climates lowered metabolic rates when acclimating to summer temperatures as compared to spring temperatures. This may act as an energy saving mechanism during the warmest time of the year. No such plasticity was evident in populations from cooler climates. Both juvenile and adult salamanders exhibited metabolic plasticity. Although some populations responded to historic climate thermal cues, no populations showed plastic metabolic rate responses to future climate temperatures, indicating there are constraints on plastic responses. We postulate that impacts of warming will likely impact the energy budgets of salamanders, potentially affecting key demographic rates, such as individual growth and investment in reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号