首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
  • Symbiotic plants might be able to regulate a limited nitrogen (N) pool, thus avoiding and reducing competition for resources, through the uptake of different chemical N forms. Our aim was to see whether coexisting herbs showed preference for different forms of N in a temperate desert.
  • We conducted a situ experiment using the 15N labeling method in the Gurbantunggut Desert of Northwestern China dominated by Erodium oxyrrhynchum, Hyalea pulchella, Nonea caspica and Lactuca undulata during their growing period (April and May).
  • Four desert herb species preferentially relied on 15N‐NO3 for their N nutrition. Multi‐factor analysis of variance (ANOVA) analysis results showed that species, N forms, months, and soil depths strongly affected N uptake rate. The uptake rate by herbs was higher in May than in April, and higher at 0–5 cm than at 5–15 cm soil layers. Erodium oxyrrhynchum, N. caspica and L. undulata showed different preference on N form over months. Erodium oxyrrhynchum and L. undulata changed their uptake preference from more 15N‐Glycine in April to more 15N‐NH4 in May.
  • Although the N uptake rate of four desert herbs varied across different soil depths and months, all species absorbed more inorganic N compared with organic N. The higher preference for 15N‐NO3 and 15N‐NH4 over 15N‐Gly possibly reflects adaptation to different N forms in temperate desert.
  相似文献   

3.
To investigate the relationship between the timing of fertiliser N applications and the N use efficiency of wheat, three field experiments with 15N were set up on winter wheat, on three different soils in France. Different crop N demands on the day of fertiliser application were obtained by varying either crop densities or date of fertiliser application. Labelled 15NH4 15NO3 was applied at tillering and during stem elongation. The 15N recovered from plant and soil at different dates after 15N addition and at maturity of wheat was measured. The fate of fertiliser N was rapidly determined, most of the fertiliser N accumulated in the wheat at maturity having been taken up within a few days of application. 15N recovery by the crop at final harvest (%) varied greatly (19–55% N applied) according to crop density, soil type and date of application. It was linearly related to the instantaneous crop growth rate calculated at the day of 15N application. The amount of fertiliser N immobilised in the soil was constant at 20 kg N ha−1, for all soil types and crop densities. Because residual mineral 15N in the soil at harvest was negligible and immobilisation was constant, the level of total 15N measured in the different N pools (soil+plant) reflected the% 15N uptake by the plant. There was consequently a negative linear relationship between the percentage of 15N not recovered for measurement, and crop growth rate (i.e. crop N demand) at date of fertiliser application. These results suggest that crop N demand at the time of N application determines the ability of the crop to compete for N with other processes, and may be a major factor determining the division of N between soil and crop. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
5.
We investigated the effects of nitrogen (N) availability during the vegetative phase on (a) post‐anthesis N uptake and (b) its translocation into ears in barley plants grown in a greenhouse at two levels of N: low (50 mg N kg?1 sand) and optimal N supply (150 mg N kg?1 sand). Plants in the two N treatments were fertilised with the same amount of labelled 15N [50 mg 15N kg?1 sand at 10% 15Nexc (Nexcess, i.e. Nexc, is defined as the abundance of enriched stable isotope minus the natural abundance of the isotope) applied as 15NH415NO3] 10 days after anthesis (daa). In a separate experiment, the uptake and transport into ears of proteinogenic and non‐proteinogenic amino acids were studied to determine whether a relationship exists between amino acid transport into ears and their proteinogenic nature. Plants were fed with either 15N‐α‐alanine, a proteinogenic amino acid, or 15N‐α‐aminoisobutyric acid, a non‐proteinogenic amino acid. Both these amino acids were labelled at 95.6% 15Nexc. Results showed that N accumulations in stems, leaves and especially in ears were correlated with their dry matter (dm) weights. The application of 150 mg N kg?1 sand significantly increased plant dm weight and total N accumulation in plants. During their filling period, ears absorbed N from both external (growth substrate) and internal (stored N in plants) sources. Nitrogen concentration in ears was higher in optimal N‐fed plants than in low N‐fed plants until 10 daa, but from 21 to 35 daa, differences were not detected. Conversely, 15Nexc in ears, leaves and stems was higher in low N‐fed plants than in optimal N‐fed plants. Ears acted as strong sink organ for the post‐anthesis N taken up from the soil independently of pre‐anthesis N nutrition: on average, 87% of the N taken up from the soil after anthesis was translocated and accumulated in ears. Low N‐fed plants continued to take up N from the post‐anthesis N fertiliser during the later grain‐filling period. The increase of pre‐anthesis N supply rate led to a decrease in the contribution of nitrogen derived from post‐anthesis 15N‐labelled fertiliser (Ndff) to total N in all aboveground organs, especially in ears where 44% and 22% of total N originated from post‐anthesis N uptake in low N‐fed and optimal N‐fed plants, respectively. The experiment with labelled amino acids showed that there was greater transport of proteinogenic amino acid into the ear (50% of total 15N) than non‐proteinogenic amino acid (39%). However, this transport of the non‐proteinogenic amino acids into ear suggested that the transport of N compounds from source (leaves) to sink organs (ear) might not be intrinsically regulated by their ability to be incorporated into storage protein of ears.  相似文献   

6.
  • 1 Agricultural intensification not only alters the structure of arthropod communities, but also may affect biotic interactions by altering the availability of basal resources. We analyzed variations in stable isotope ratios (15N/14N and 13C/12C) of fertilizers, plants, prey and generalist predators in organic and conventional farming systems in a long‐term agricultural experiment [DOK trial (bioDynamic, bioOrganic, Konventionell)]. Two basal resources with pronounced differences in carbon isotope signatures, wheat litter (C3 plant) and maize litter (C4 plant), were used to uncover differences in food web properties between the two farming systems (conventional versus organic).
  • 2 Predators incorporated significantly higher proportions of carbon from wheat sources in organically managed fields, suggesting that they were more closely linked to wheat‐consuming prey in this system. The δ15N values of three predaceous species were more than 2‰ greater in summer than in spring.
  • 3 The results obtained suggest that generalist predators consumed higher proportions of herbivore prey in the organic system and that starvation and intraguild predation rates increased in some predator species with time.
  • 4 Because the effects of farming system and sampling date on predators were species‐specific, conserving a diverse natural enemy community including species with different phenologies and sensitivities to management practices may, in the long term, be a good strategy for maintaining high pest suppression throughout the growing season.
  相似文献   

7.
  • 1 Insect frass has significant impacts on decomposition and soil nitrogen dynamics. Although the frass contains various forms of nitrogen that may differently influence nitrogen dynamics in the decomposition process, how the nitrogen form in the insect frass is influenced by host plant quality remains poorly understood.
  • 2 The present study examined the effects of application of fertilizer on leaf quality of Brassica rapa L. var. perviridis Bailey (Brassicaceae), and on the consumption, frass excretion and frass quality of its insect pest Mamestra brassicae (L.) (Lepidoptera: Noctuidae), with a particular focus on the dynamics of inorganic nitrogen.
  • 3 Brassica rapa increased total nitrogen concentration, and accumulated inorganic nitrogen [i.e. leaf nitrate‐nitrogen (NO3?‐N) and ammonium‐nitrogen (NH4+‐N)] in the leaves in response to the application of fertilizer.
  • 4 Although leaf consumption and frass excreted by M. brassicae was not affected by fertilizer treatment, frass quality was influenced by host plant quality as altered by fertilizer applications. Frass contained high concentrations of total nitrogen, NO3?‐N, and NH4+‐N under high fertilizer treatment. In particular, the larvae excreted much more NH4+‐N than ingested. The relationship between host plant quality and insect frass quality, as well as the potential implications for decomposition and nutrient dynamics, are discussed.
  相似文献   

8.
Emissions of N2O were measured following combined applications of inorganic N fertiliser and crop residues to a silt loam soil in S.E. England, UK. Effects of cultivation technique and residue application on N2O emissions were examined over 2 years. N2O emissions were increased in the presence of residues and were further increased where NH4NO3 fertiliser (200 kg N ha–1) was applied. Large fluxes of N2O were measured from the zero till treatments after residue and fertiliser application, with 2.5 kg N2O-N ha–1 measured over the first 23 days after application of fertiliser in combination with rye (Secale cereale) residues under zero tillage. CO2 emissions were larger in the zero till than in the conventional till treatments. A significant tillage/residue interaction was found. Highest emissions were measured from the conventionally tilled bean (Vicia faba) (1.0 kg N2O-N ha–1 emitted over 65 days) and zero tilled rye (3.5 kg N2O-N ha–1 over 65 days) treatments. This was attributed to rapid release of N following incorporation of bean residues in the conventionally tilled treatments, and availability of readily degradable C from the rye in the presence of anaerobic conditions under the mulch in the zero tilled treatments. Measurement of 15N-N2O emission following application of 15N-labelled fertiliser to microplots indicated that surface mulching of residues in zero till treatments resulted in a greater proportion of fertiliser N being lost as N2O than with incorporation of residues. Combined applications of 15N fertiliser and bean residues resulted in higher or lower emissions, depending on cultivation technique, when compared with the sum of N2O from single applications. Such interactions have important implications for mitigation of N2O from agricultural soils.  相似文献   

9.
Ammonium and nitrate uptake rates in the macroalgae Ulva fenestrata (Postels and Ruprecht) (Chlorophyta) and Gracilaria pacifica (Abbott) (Rhodophyta) were determined by 15N accumulation in algal tissue and by disappearance of nutrient from the medium in long‐term (4–13 days) incubations. Nitrogen‐rich algae (total nitrogen> 4% dry weight [dw]) were used to detect isotope dilution by release of inorganic unlabeled N from algal thalli. Uptake of NH4 + was similar for the two macroalgae, and the highest rates were observed on the first day of incubation (45 μmol N·g dw ? 1·h ? 1 in U. fenestrata and 32 μmol N·g dw ? 1·h ? 1 in G. pacifica). A significant isotope dilution (from 10 to 7.9 atom % enrichment) occurred in U. fenestrata cultures during the first day, corresponding to a NH4 + release rate of 11 μmol N·g dw ? 1·h ? 1. Little isotope dilution occurred in the other algal cultures. Concurrently to net NH4 + uptake, we observed a transient free amino acid (FAA) release on the first day in both macroalgal cultures. The uptake rates estimated by NH4 + disappearance and 15N incorporation in algal tissue compare well (82% agreement, defined as the percentage ratio of the lower to the higher rate) at high NH4 + concentrations, provided that isotope dilution is taken into account. On average, 96% of added 15NH4 + was recovered from the medium and algal tissue at the end of the incubation. Negligible uptake of NO3 ? was observed during the first 2–3 days in both macroalgae. The lag of uptake may have resulted from the need for either some N deprivation (use of NO3 ? pools) or physiological/metabolic changes required before the uptake of NO3 ? . During the subsequent days, NO3 ? uptake rates were similar for the two macroalgae but much lower than NH4 + uptake rates (1.97–3.19 μmol N·g dw ? 1·h ? 1). Very little isotope dilution and FAA release were observed. The agreement between rates calculated with the two different methods averaged 91% in U. fenestrata and 95% in G. pacifica. Recovery of added 15NO3 ? was virtually complete (99%). These tracer incubations show that isotope dilution can be significant in NH4 + uptake experiments conducted with N‐rich macroalgae and that determination of 15N atom % enrichment of the dissolved NH4 + is recommended to avoid poor isotope recovery and underestimation of uptake rates.  相似文献   

10.
11.
The nitrogen isotope composition (δ15N) of plants has potential to provide time‐integrated information on nitrogen uptake, assimilation and allocation. Here, we take advantage of existing T‐DNA and γ‐ray mutant lines of Arabidopsis thaliana to modify whole‐plant and organ‐level nitrogen isotope composition. Nitrate reductase 2 (nia2), nitrate reductase 1 (nia1) and nitrate transporter (nrt2) mutant lines and the Col‐0 wild type were grown hydroponically under steady‐state NO3 conditions at either 100 or 1000 μM NO3 for 35 days. There were no significant effects on whole‐plant discrimination and growth in the assimilatory mutants (nia2 and nia1). Pronounced root vs leaf differences in δ15N, however, indicated that nia2 had an increased proportion of nitrogen assimilation of NO3 in leaves while nia1 had an increased proportion of assimilation in roots. These observations are consistent with reported ratios of nia1 and nia2 gene expression levels in leaves and roots. Greater whole‐plant discrimination in nrt2 indicated an increase in efflux of unassimilated NO3 back to the rooting medium. This phenotype was associated with an overall reduction in NO3 uptake, assimilation and decreased partitioning of NO3 assimilation to the leaves, presumably because of decreased symplastic intercellular movement of NO3 in the root. Although the results were more varied than expected, they are interpretable within the context of expected mechanisms of whole‐plant and organ‐level nitrogen isotope discrimination that indicate variation in nitrogen fluxes, assimilation and allocation between lines.  相似文献   

12.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

13.
14.
为探索玉米-大豆套作系统中作物对N素吸收的差异特性,揭示减量施N对玉米-大豆套作系统的N高效利用机理。利用15N同位素示踪技术,结合小区套微区多年定位试验,研究了玉米单作(MM)、大豆单作(SS)、玉米-大豆套作(IMS)及不施N(NN)、减量施N(RN:180 kg N/hm2)、常量施N(CN:240 kg N/hm2)下玉米、大豆的生物量、吸N量、N肥利用率及土壤N素含量变化。结果表明,与MM(SS)相比,IMS下玉米茎叶及籽粒的生物量、吸N量降低,15N%丰度及15N吸收量增加,大豆籽粒及植株的生物量、吸N量及15N吸收量显著提高;IMS下玉米、大豆植株的N肥利用率、土壤N贡献率、土壤15N%丰度降低,15N回收率显著增加。施N与不施N相比,显著提高了单、套作下玉米、大豆植株的生物量、吸N量、15N丰度及15N吸收量;RN与CN相比,IMS下,RN的玉米、大豆植株总吸N量提高13.4%和12.4%,N肥利用率提高213.0%和117.5%,土壤总N含量提高12.2%和11.6%,土壤N贡献率降低12.0%和11.2%,玉米植株15N吸收量与15N回收率提高14.4%和52.5%,大豆的则降低57.1%和42.8%,单作与套作的变化规律一致。玉米-大豆套作系统中作物对N素吸收存在数量及形态差异,减量施N有利于玉米-大豆套作系统对N肥的高效吸收与利用,实现作物持续增产与土壤培肥。  相似文献   

15.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

16.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

17.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

18.
19.
This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep) for four forests in the United Kingdom subjected to different Ndep: Scots pine and beech stands under high Ndep (HN, 13–19 kg N ha?1 yr?1), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha?1 yr?1). Changes of NO3‐N and NH4‐N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ18O, Δ17O and δ15N in NO3? and δ15N in NH4+, were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4‐N and NO3‐N concentrations in RF compared to the LN sites. Similar values of δ15N‐NO3? and δ18O in RF suggested similar source of atmospheric NO3? (i.e. local traffic), while more positive values for δ15N‐NH4+ at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N‐forms changed after interacting with tree canopies. Indeed, 15N‐enriched NH4+ in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ18O and Δ17O, we quantified for the first time the proportion of NO3? in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ17O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ17O.  相似文献   

20.
The effects of irrigation and fertiliser regimes on N leaching from the production of couch grass (Cynodon dactylon L.) sod, on a free-draining sandy soil, were evaluated in a 22-month field study. The experimental design used a randomised-block, split-plot design with three replicates. Main plots consisted of two irrigation treatments: 70 and 140% daily replacement of pan evaporation; four subplot fertiliser types (water-soluble (predominately NH4NO3), control-release, pelletised poultry manure and pelletised biosolids); and three N application rates (100, 200 and 300 kg N ha−1 per crop). Nitrogen leaching was assessed by measuring the leachate volumes and concentrations of N species leached from soil lysimeters (250 mm in diameter by 950 mm in length) installed in 10 m2 turfgrass plots. Nitrogen leaching ranged from 33 to 167 kg N ha−1 over 22 months, depending upon the irrigation and fertiliser treatment. Irrigation treatment affected N leaching more than fertiliser treatment, and increasing the irrigation from 70 to 140% replacement of daily pan evaporation increased N leaching for all fertiliser types, and by up to four times. Forty six to 76% of losses occurred from the high irrigation treatments during the first 16 weeks after the turfgrass was planted as rhizomes. By contrast, N leaching did not appear to increase following harvest of sod. At the high irrigation treatment, N leaching was greater for the pelletised biosolids than the control-release; while at the low irrigation treatment, N leaching did not vary between fertiliser types. A significant proportion of the N leached was in the organic form. Therefore, we recommend total N and mineral N be measured when assessing N leaching from turfgrass. Nitrogen leaching from turfgrass production is low from all fertiliser types when the irrigation matches turfgrass water use and N is applied at a rate and frequency that approximates turfgrass requirements. Section Editor: P. J. Randall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号