首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Pollination in Solanum (Solanaceae) species is commonly performed by female bees, which vibrate anthers to extract pollen. Another pollen removal type is by male euglossine bees, milking the anthers when searching for floral scents produced by secretory tissues (osmophorous) at the swollen connective of the anthers of species in the Cyphomandra clade. Some species of this clade, however, are buzz‐pollinated and present papillate anthers that should also have secretory activity, a hypothesis here tested.
  • The anthers of Solanum luridifuscescens were fixed at different stages of development and analysed under light microscopy, SEM and TEM. Histochemical tests for the detection of starch and lipids were done.
  • Epidermal cells of the abaxial surface of the anthers were visibly papillose, had large nuclei and dense cytoplasm rich in organelles such as mitochondria and plastids, typical features of secretory tissues. In this site, lipid droplets were detected, concomitantly with starch consumption, compatible with the secretory process in osmophores. No exudate or accumulation of substances was seen on the surface; in agreement with a previous pollination study performed in field conditions, where no pollinators were observed collecting floral scents, only pollen. The histochemical and structural analyses have evidenced the lipidic composition of the secretion, strongly pointing to terpenes as the secreted compounds.
  • Ours findings show that papillae of the anthers have secretory activities that produce lipophilic compounds. This does not result in resources for bees, but could be an evolutionary step to the development of more specialised anthers in the Cyphomandra clade.
  相似文献   

2.
Parthenocissus (the Virginia creeper genus, Vitaceae) consists of 13 species and shows a disjunct distribution between Asia and North America. We investigated the inflorescence structure, calyx morphology, appendages on the inner side of petals, leaf epidermis, pollen and seed characters throughout the genus. A combined phylogenetic analysis with 27 morphological and 4137 molecular characters was conducted and the result was largely congruent with that of the previous molecular work, but with higher resolution. The combined analysis identified two clades corresponding to the Asian and North American taxa. Parthenocissus feddei was resolved as closely related to the clade containing P. cuspidifera, P. heterophylla and P. semicordata. The four species share synapomorphies of having conspicuously raised veinlets, an obscurely five‐ (to eight‐) lobed calyx, appendages on the inner side of petals covering the entire length of anthers and foveolate pollen exine ornamentation. Within the Old World clade, the pentafoliolate species were weakly supported as more closely related to species with both simple and trifoliolate leaves. Furthermore, the ancestral states of tendril apices, inflorescence structure, appendages on the inner side of petals and exine ornamentation of pollen grains were reconstructed on the molecular strict consensus tree. The appendages on the inner side of petals and exine ornamentation of pollen grains were suggested to be important characters in the taxonomy of Parthenocissus, especially for species with trifoliolate leaves. Finally, the previous classifications of Parthenocissus were evaluated within the phylogenetic framework. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, ?? , ??–??.  相似文献   

3.
  • The tropical Melastomataceae are characterized by poricidal anthers which constitute a floral filter selecting for buzz‐pollinating bees. Stamens are often dimorphic, sometimes with discernible feeding and pollinating functions. Rhynchanthera grandiflora produces nectarless flowers with four short stamens and one long stamen; all anthers feature a narrow elongation with an upwards facing pore.
  • We tested pollen transfer by diverse foraging bees and viability of pollen from both stamen types. The impact of anther morphology on pollen release direction and scattering angle was studied to determine the plant's reproductive strategy.
  • Medium‐sized to large bees sonicated flowers in a specific position, and the probability of pollen transfer correlated with bee size even among these legitimate visitors. Small bees acted as pollen thieves or robbers. Anther rostrum and pore morphology serve to direct and focus the pollen jet released by floral sonication towards the pollinator's body. Resulting from the ventral and dorsal positioning of the short and long stamens, respectively, the pollinator's body was widely covered with pollen. This improves the plant's chances of outcrossing, irrespective of which bee body part contacts the stigma. Consequently, R. grandiflora is also able to employ bee species of various sizes as pollen vectors.
  • The strategy of spreading pollen all over the pollinator's body is rather cost‐intensive but counterbalanced by ensuring that most of the released pollen is in fact transferred to the bee. Thus, flowers of R. grandiflora illustrate how specialized morphology may serve to improve pollination by a functional group of pollinators.
  相似文献   

4.
Han Y  Dai C  Yang CF  Wang QF  Motley TJ 《Annals of botany》2008,102(3):473-479

Background and Aims

Anther appendages play diverse roles in anther dehiscence and pollen dispersal. This study aims to explore the pollen-dispensing mechanism triggered by special anther appendages in Incarvillea arguta.

Methods

Field studies were conducted to record floral characteristics, pollinator visitations, and flower–pollinator interactions. Measurements of flowers and pollinators were analysed statistically. Pollen counts following a series of floral manipulations were used to evaluate pollen dispensing efficiency and function of the anther appendages.

Key Results

Field observations determined that two species of Bombus (bumble-bees) were the primary pollinators of I. arguta with a mean visiting frequency of 1·42 visitations per flower h−1. The results display a diminishing pollen dispensing pattern; the proportion of remaining pollen removed by pollinators decreased from 27 % to 10 % and 7 % in subsequent visits. Anther appendages act as a trigger mechanism to dispense pollen. The arrangement of the anthers and appendages function to control pollen load and timing. Mechanical stimulation experiments revealed that one set of appendages is only triggered by stimulation in the direction moving into the flower, while the other set is only triggered by stimulation in the opposite direction (exiting the flower).

Conclusions

The anther appendage is a pollen-dispensing trigger mechanism. The configuration of the stamens and duel trigger system has evolved to allocate pollen in allotments to enhance male function.Key words: Incarvillea arguta, anther appendage, pollination biology, Bignoniaceae, stamen morphology, pollen dispensing  相似文献   

5.
  • Pollen and stigma size have the potential to influence male fitness of hermaphroditic plants, particularly in species presenting floral polymorphisms characterised by marked differences in these traits among floral morphs. In this study, we take advantage of the evolutionary transition from tristyly to distyly experienced by Oxalis alpina (Oxalidaceae), and examined whether modifications in the ancillary traits (pollen and stigma size) respond to allometric changes in other floral traits. Also, we tested whether these modifications are in accordance with what would be expected under the hypothesis that novel competitive scenarios (as in distylous‐derived reproductive system) exert morph‐ and whorl‐specific selective pressures to match the available stigmas.
  • We measure pollen and stigma size in five populations of O. alpina representing the tristyly–distyly transition.
  • A general reduction in pollen and stigma size occurred along the tristyly–distyly transition, and pollen size from the two anther levels within each morph converged to a similar size that was characterised by whorl‐specific changes (increases or decreases) in pollen size of different anthers in each floral type.
  • Overall, results from this study show that the evolution of distyly in this species is characterised not only by changes in sexual organ position and flower size, but also by morph‐specific changes in pollen and stigma size. This evidence supports the importance of selection on pollen and stigma size, which increase fitness of remaining morphs following the evolution of distyly, and raises questions to explore on the functional value of pollen size in heterostylous systems under pollen competition.
  相似文献   

6.
Ateleia herbert-smithii is unique among legumes in being a wind-pollinated tree; carpellate and staminate flowers are restricted to different trees. Development of the two floral morphs, however, is essentially the same except for smaller carpels in functionally staminate flowers and failure of pollen formation in the anthers of functionally carpellate flowers. The floral development of Ateleia herbert-smithii is highly atypical among papilionoids and the tribe Sophoreae. Order of organ initiation is: sepals, solitary petal, carpel, and lastly all stamens in erratic order. Sepal order is unidirectional from the abaxial side, the normal pattern for papilionoids. Only one petal, the vexillum or standard, is initiated. Subsequent initiation is completely different from the usual unidirectional pattern of most papilionoids. A meristem ring forms, delimiting the solitary carpel centrally. Ten stamen primordia are initiated on the meristem ring, first laterally, then adaxially, and lastly abaxially. There is a tendency for antesepalous stamens to form before the antepetalous ones. The loss of four of the five petals is thought to alter drastically the subsequent organogeny as to position of organs and their order of initiation. Carpel initiation in Ateleia is precocious, but not uniquely so among legumes.  相似文献   

7.
8.
Flowers of Dipterygeae (Fabaceae, Papilionoideae) exhibit an unusual petaloid calyx. The two adaxial sepals are large and petaloid, and the three abaxial sepals form a three‐toothed lobe. The goal of this study was to elucidate the ontogenetic pathways of this peculiar calyx in light of the floral development of the three genera that comprise the tribe. Floral buds of Dipteryx alata, Pterodon pubescens and Taralea oppositifolia were analysed using scanning electron microscopy and light microscopy. The order of bracteole and sepal initiation varies among the species. The androecium is asymmetric. The carpel cleft is positioned to the right or to the left, and is opposite the adaxial antepetalous stamen. The peculiarity of the calyx becomes noticeable in the intermediate stages of floral development. It results from the differential growth of the sepal primordia, in which the abaxial and lateral primordia remain diminutive during floral development, compared with the adaxial ones that enlarge and elongate. Bracteoles, abaxial sepals, petals and anthers are appendiculate, except in T. oppositifolia, in which the appendices were not found in bracteoles or anthers. These appendices comprise secretory canals or cavities. Considering that the ontogenetic pathway for the formation of the petaloid calyx is similar and exclusive for Dipterygeae, it might be a potential synapomorphy for the group, with the presence of secretory canals in the appendices of abaxial and lateral sepals and petals. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 529–550.  相似文献   

9.
Abstract: Glandular trichomes (ca. 16 per anther) on the anthers of Leonurus sibiricus produce a secretion that, when touched, is liberated at once and becomes sticky when in contact with the air. With successive visitations of the pollinators (species of Bombus in naturalized populations) the number of secretion‐containing glands on each anther diminishes by mechanical rupture. On the pollinators, the secretion mixed with pollen was found adhered to the integument on the parts making contact with the anthers and stigma, mostly on the scape of the antennae. These trichomes are anatomically identical to the glandular scales common in the entire family and are formed by a multicellular cuticle‐bounded structure, with a foot and head. The secretion is accumulated as a milky emulsion under the cuticle, outside the primary cell wall, and is liberated by rupture of the cuticle. The composition possibly differs from what generally distinguishes these glandular trichomes, i.e. volatile oils that give these plants their particular smell. Such volatile compounds are generally assumed to have defensive or attractive functions, different from those observed in this study, which would be strictly mechanical.  相似文献   

10.
The role of pollen odour in resource location by the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), a pollen-feeding insect regarded as a pest of oilseed rape, Brassica napus L., (Brassicaceae) crops, was investigated in a linear track olfactometer. Both male and female beetles were attracted to the odour of whole oilseed rape flowers, indicating that these insects can locate their host plants using floral odours as cues. The attractive odour of flowers was found to emanate from all floral parts tested: the petals/sepals, the anthers, and from pollen itself. Therefore, at least part of the attractive odour of oilseed rape flowers emanates from pollen. Beetles were more attracted to floral samples containing anthers than those without anthers when these odours were directly compared in a choice-test, and this indicates that there were detectable differences between them. Anthers and pollen may therefore release distinctive odours that are quantitatively and/or qualitatively different from the odour of the rest of the flower. These experiments support the hypothesis that pollen-seeking insects use pollen odour cues to locate this food source.  相似文献   

11.
The selective pressure imposed by maximizing male fitness (pollen dispersal) in shaping floral structures is increasingly recognized and emphasized in current plant sciences. To maximize male fitness, many flowers bear a group of stamens with temporally separated anther dehiscence that prolongs presentation of pollen grains. Such an advantage, however, may come with a cost resulting from interference of pollen removal by the dehisced anthers. This interference between dehisced and dehiscing anthers has received little attention and few experimental tests to date. Here, using one-by-one stamen movement in the generalist-pollinated Parnassia palustris, we test this hypothesis by manipulation experiments in two years. Under natural conditions, the five fertile stamens in P. palustris flowers elongate their filaments individually, and anthers dehisce successively one-by-one. More importantly, the anther-dehisced stamen bends out of the floral center by filament deflexion before the next stamen''s anther dehiscence. Experimental manipulations show that flowers with dehisced anther remaining at the floral center experience shorter (1/3–1/2 less) visit durations by pollen-collecting insects (mainly hoverflies and wasps) because these ‘hungry’ insects are discouraged by the scant and non-fresh pollen in the dehisced anther. Furthermore, the dehisced anther blocks the dehiscing anther''s access to floral visitors, resulting in a nearly one third decrease in their contact frequency. As a result, pollen removal of the dehiscing anther decreases dramatically. These results provide the first direct experimental evidence that anther-anther interference is possible in a flower, and that the selection to reduce such interferences can be a strong force in floral evolution. We also propose that some other floral traits, usually interpreted as pollen dispensing mechanisms, may function, at least partially, as mechanisms to promote pollen dispersal by reducing interferences between dehisced and dehiscing anthers.  相似文献   

12.
  • Heteranthery, the presence of feeding and pollinating anthers in the same flower, seems to mediate the evolutionary dilemma for plants to protect their gametes and yet provide food for pollinators. This study aims to elucidate the role of heteranthery in the buzz‐pollinated Senna reniformis.
  • The fecundity of pollen from long‐, medium‐ and short‐sized anthers was determined by hand cross‐pollination experiments, and the quantity, size, ornamentation and viability of pollen of different anthers were compared. Rates of flower rejection by bees were measured in anther removal experiments to assess the preferences of flower visitors for feeding or pollinating anthers.
  • Large bees, which were the effective pollinators of self‐incompatible S. reniformis, avoided flowers without short feeding anthers, but not those without medium or long anthers. Illegitimate small and medium‐sized bees were unresponsive to anther exclusion experiments. Long anthers deposited pollen on the back and short anthers on the venter of large bees. Pollen from long anthers had higher in vitro viability and higher fruit and seed set after cross‐pollination than pollen from other sized anthers.
  • Short anthers produce feeding pollen to effective pollinators and long anthers are related to pollination of S. reniformis. Bee behaviour and size was found to directly influence the role of anthers in the ‘division of labour’. Only large bee pollinators that carry the pollinating pollen from long anthers in ‘safe sites’ associated short anthers with the presence of food. In the absence of these larger bee pollinators, the role of heteranthery in S. reniformis would be strongly compromised and its function would be lost.
  相似文献   

13.
The stage of pollen development at the time of anther culture is an important factor in the production of haploids. The objectives of the current study were to develop a staining procedure for peanut (Arachis hypogaea L., ssp. hypogaea) microspores, to describe and document the stages of microsporogenesis in peanut, and to confirm a previous report concerning correlations of peanut floral bud shape with stage of microspore development. A staining procedure using propionic carmine provided adequate staining of pollen mother cells, microspores, and pollen. Pollen mother cells and microspores could easily be differentiated by their size and cell wall structure. Plants grown in a controlled environment were found to have highly synchronized microspore development, both within an anther and among anthers contained in the same bud. In addition, floral bud shape was confirmed as a reliable indicator of anther stage in peanuts.  相似文献   

14.

Bdallophytum americanum (Cytinaceae) is an endoparasitic plant species, meaning only the flowers emerge from the host during the reproductive season. Reports on the pollination biology of this species state that its primary pollinators are carrion flies attracted by the smell of the flowers and nectar as a reward. However, the functional role of one of the most outstanding attributes of B. americanum has been neglected. These are the staminal appendages formed by the apical overgrowth of connective tissue during anther development. To determine whether these staminal appendages play a role in pollination, we monitored a nectarless population of B. americanum. We described the inflorescence emergence, floral movements, and pollination and performed field experiments to test whether the absence of the staminal connective appendages affected the visitation frequency. Male inflorescences emerge early, and both male and female flowers open during the day and do not close. Hoverflies are the most frequent visitors to both floral sexes and carry the most pollen. Moreover, the movement of staminal appendages matching the pollen viability changes is reported for the first time. The staminal appendages are the structures where pollinators land before foraging. The field experiments showed that the visitation frequency decreased sharply without staminal appendages. As a landing platform, the staminal connective appendages in B. americanum are crucial for pollinator positioning and collecting viable pollen.

  相似文献   

15.
Premise of study: Phylogenetic relationships of the papilionoid legumes (Papilionoideae) reveal that the early branches are more highly diverse in floral morphology than are other clades of Papilionoideae. This study attempts for the first time to comprehensively sample the early-branching clades of this economically and ecologically important legume subfamily and thus to resolve relationships among them. • Methods: Parsimony and Bayesian phylogenetic analyses of the plastid matK and trnL intron sequences included 29 genera not yet sampled in matK phylogenies of the Papilionoideae, 11 of which were sampled for DNA sequence data for the first time. • Key results: The comprehensively sampled matK phylogeny better resolved the deep-branching relationships and increased support for many clades within Papilionoideae. The potentially earliest-branching papilionoid clade does not include any genus traditionally assigned to tribe Swartzieae. Dipterygeae is monophyletic with the inclusion of Monopteryx. The genera Aldina and Amphimas represent two of the nine main but as yet unresolved lineages comprising the large 50-kb inversion clade within papilionoids. The quinolizidine-alkaloid-accumulating genistoid clade is expanded to include a strongly supported subclade containing Ormosia and the previously unplaced Clathrotropis s.s., Panurea, and Spirotropis. Camoensia is the first-branching genus of the core genistoids. • Conclusions: The well-resolved phylogeny of the earliest-branching papilionoids generated in this study will greatly facilitate the efforts to redefine and stabilize the classification of this legume subfamily. Many key floral traits did not often predict phylogenetic relationships, so comparative studies on floral evolution and plant–animal interactions, for example, should also benefit from this study.  相似文献   

16.
Studies in zucchini (Cucurbita pepo L. spp. pepo) pollen have been limited to the viability and morphology of the mature pollen grain. The enzyme polygalacturonase (PG) is involved in pollen development and pollination in many species. In this work, we study anther and pollen development of C. pepo and present the cloning and characterisation of a putative PG CpPG1 (Accession no. HQ232488 ) from pollen cDNA in C. pepo. The predicted protein for CpPG1 has 416 amino acids, with a high homology to other pollen PGs, such as P22 from Oenothera organensis (76%) and PGA3 from Arabidopsis thaliana (73%). CpPG1 belongs to clade C, which comprises PGs expressed in pollen, and presents a 34 amino acid signal peptide for secretion towards the cell wall. DNA‐blot analysis revealed that there are at least another two genes that code for PGs in C. pepo. The spatial and temporal accumulation of CpPG1 was studied by semi‐quantitative‐ and qRT‐PCR. In addition, mRNA was detected only in anthers, pollen and the rudimentary anthers of bisexual flowers (only present in some zucchini cultivars under certain environmental conditions that trigger anther development in the third whorl of female flowers). However, no expression was detected in cotyledons, stem or fruit. Furthermore, CpPG1 mRNA was accumulated throughout anther development, with the highest expression found in mature pollen. Similarly, exo‐PG activity increased from immature anther stages to mature anthers and mature pollen. Overall, these data support the pollen specificity of this gene and suggest an involvement of CpPG1 in pollen development in C. pepo.  相似文献   

17.
Gynodioecy, the phenomenon of having both hermaphrodite and female (i.e. male‐sterile) individuals within the same population, is an important intermediate step in the evolution of separate sexes in flowering plants. In this study, we investigated the floral micromorphology and microsporogenesis of the gynodioecious herb Glechoma longituba from four natural populations in Korea. The floral micromorphological characters of the different sex morphs were examined and compared using scanning electron microscopy (SEM), and the ultrastructure of microspores during microsporogenesis was studied. We also examined the development of anthers and pollen grains in the three sexual morphs (i.e. hermaphrodites, females, and gynomonoecious, i.e. individuals with a mixture of female and hermaphroditic flowers) by embryological investigation. The major difference in anther development between the three phenotypes was the early disintegration of the tapetal cells in the anthers of female flowers. While mature fertile pollen grains were found in both hermaphrodite and gynomonoecious phenotypes, females did not produce any pollen grains. In addition, both fertile and sterile pollen grains in gynomonoecious phenotypes were frequently observed. The results of the present study indicate that floral micromorphological characters were not distinct between sexual morphs of G. longituba, except for the structure of the inner cell surfaces of the anther. The observed tapetum abnormalities and degeneration of pollen grains in both gynomonoecious phenotypes and females may be the consequence of inbreeding depression in hermaphrodites.  相似文献   

18.
Reproductive phenology, floral biology, degree of self‐incompatibility, and floral visitors of Erythrina falcata were studied in an Argentinean population. Flowering occurs during the dry season from late August to late October. Flower lifetime is 5–6 d. Phylogenetic studies indicate that E. falcata, together with E. fusca and E. crista‐galli, are included in a basal clade within Erythrina. Its phylogenetic position, floral morphology, and nectar characteristics suggest a hummingbird–passerine mixed pollination system. The flowers are nontubular, and the vexillum (the upper petal of the corolla) covers the other remaining floral parts until displaced by a visiting passerine (Icterus cayanensis) or a hummingbird (Amazilia chionogaster). Both birds act as pollen vectors. Bees were observed as occasional pollinators. Nectar production begins at anther dehiscence and coincides with maximum stigmatic receptivity. The base of the keel forms a secondary nectar reservoir. Controlled pollinations showed that this species is self‐incompatible, although a few fruits develop from selfing. Pollen:ovule ratio (43,200:7) is as expected for a xenogamous plant. Only 1 percent of the flowers set seeds under natural conditions. Possible explanations for the low reproductive success are discussed.  相似文献   

19.
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.  相似文献   

20.
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedtia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bracteoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号